Ionization of Helium Atoms by Triply Charged Metal Atoms during Laser Ablation of Metals in Superfluid Helium

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The applicability of laser ablation of metal targets for obtaining triply charged ions of metal atoms, including low-melting metals, has been experimentally demonstrated. By analyzing the luminescence spectra of a plasma plume during laser ablation of a metal target immersed in superfluid helium, the main channel for the formation of helium ions in plasma at a laser beam power density below the breakdown threshold of the helium medium has been determined. It has been shown that the ionization of helium atoms occurs in two steps, the formation of the HeM3+ ionic complex and the dissociation of the complex via its interaction with a metal atom.

Sobre autores

R. Boltnev

Joint Institute for High Temperatures, Russian Academy of Sciences; Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: boltnev@gmail.com
Moscow, 125412 Russia; Chernogolovka, Moscow oblast, 142432 Russia

A. Karabulin

Joint Institute for High Temperatures, Russian Academy of Sciences; Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: irkrush@gmail.com
Moscow, 125412 Russia; Chernogolovka, Moscow oblast, 142432 Russia

I. Krushinskaya

Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: irkrush@gmail.com
Chernogolovka, Moscow oblast, 142432 Russia

A. Pelmenev

Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: irkrush@gmail.com
Chernogolovka, Moscow oblast, 142432 Russia

V. Matyushenko

Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: irkrush@gmail.com
Chernogolovka, Moscow oblast, 142432 Russia

Bibliografia

  1. NIST Atomic Spectra Database, NIST Standard Reference Database 78, https://physics.nist.gov/PhysRefData/ASD/ionEnergy.html
  2. Schmidt J., Gavioso R., May E., Moldover M. // Phys. Rev. Lett. 2007. V. 98. № 25. P. 254504.
  3. Hughes J.M., von Nagy-Felsobuki E.I. // Eur. Phys. J. D. 1999. V. 6. № 2. P. 185.
  4. Grandinetti F. // Int. J. Mass Spectrom. 2004. V. 237. № 2–3. P. 243.
  5. Wilson D.J.D., Marsden C.J., von Nagy-Felsobuki E.I. // Chem. Phys. 2002. V. 284. № 3. P. 555–563.
  6. Wilson D.J.D., Marsden C.J., von Nagy-Felsobuki E.I. // Phys Chem Chem Phys. 2003. V. 5. № 2. P. 252–258.
  7. Wesendrup R., Pernpointner M., Schwerdtfeger P. // Phys. Rev. A. 1999. V. 60. № 5. P. R3347–R3349.
  8. Müller E.W., Tsong T.T. // Prog. Surf. Sci. 1974. V. 4. P. 1–139.
  9. Tsong T.T., Kinkus T.J. // Phys. Scr. 1983. V. T4. P. 201–203.
  10. Karabulin A.V., Matyushenko V.I., Khodos I.I. // High Energy Chem. 2022. V. 56. № 6. P. 493–498.
  11. Sirisky S., Yang Y., Wei W., Maris H.J. // J. Low Temp. Phys. 2017. V. 189. № 1–2. P. 53–59.
  12. Buelna X., Popov E., Eloranta J. // J. Low Temp. Phys. 2017. V. 186. № 3–4. P. 197–207.
  13. Benderskii A.V., Zadoyan R., Schwentner N., Apkarian V.A. // J. Chem. Phys. 1999. V. 110. № 3. P. 1542–1557.
  14. Atrazhev V.M., Shakhatov V.A., Boltnev R.E., Bonifaci N., Aitken F., Eloranta J. // High Temp. 2017. V. 55. № 2. P. 165–173.
  15. Cabalín L.M., Laserna J.J. // Spectrochim. Acta Part B At. Spectrosc. 1998. V. 53. № 5. P. 723–730.
  16. Torrisi L., Gammino S., Andò L., Làska L. // J. Appl. Phys. 2002. V. 91. № 7. P. 4685–4692.
  17. Wu D., Mao X., Chan G.C.-Y., Russo R.E., Zorba V., Ding H. // J. Anal. At. Spectrom. 2020. V. 35. № 4. P. 767–775.
  18. Wu D., Chan G.C.-Y., Mao X., Li Y., Russo R.E., Ding H., Zorba V. // Plasma Sci. Technol. 2021. V. 23. № 9. P. 095505.
  19. Saxena A.K., Singh R.K., Joshi H.C. // Plasma Sources Sci. Technol. 2021. V. 30. № 3. P. 035016.
  20. Wright T.G., Lee E.P.F. // Chem. Phys. Lett. 2004. V. 383. № 1–2. P. 1–5.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (539KB)
3.

Baixar (144KB)
4.

Baixar (251KB)
5.

Baixar (115KB)

Declaração de direitos autorais © Р.Е. Болтнев, А.В. Карабулин, И.Н. Крушинская, А.А. Пельменёв, В.И. Матюшенко, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies