Quantum-Chemical Study of Synthesized Ultrafine Bi2O3–B2O3–BaO Glasses

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The object of the study is ultrafine bismuth barium borate glasses 20Bi2O3–хBaO–(80−х)B2O3, х = 5, 10, or 20 mol % BaO, synthesized using a unique version of the sol–gel method and holding promise for fabricating functional crystalline glass ceramics, in particular, based on yttrium aluminum garnet. A DSC analysis of the obtained charge material with 0.5 μm spherical particles revealed their glassy state at temperatures
of 450–475°C. The presence of glass in particles of such a small size allows the use of the so-called cluster approximation in a quantum-chemical study of the geometric and electronic structure of glasses by the DFT/UB3LYP/LanL2DZ method. Calculated IR absorption spectra are compared with the experimental spectra of the obtained dispersed samples.

Sobre autores

S. Plekhovich

Lobachevsky National Research University of Nizhny Novgorod

Email: plekhovich@ihps-nnov.ru
Nizhny Novgorod, 603950 Russia

A. Plekhovich

Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences

Email: plekhovich@ihps-nnov.ru
Nizhny Novgorod 603950 Russia

A. Kut’in

Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences

Email: plekhovich@ihps-nnov.ru
Nizhny Novgorod 603950 Russia

A. Budruev

Lobachevsky National Research University of Nizhny Novgorod

Autor responsável pela correspondência
Email: plekhovich@ihps-nnov.ru
Nizhny Novgorod, 603950 Russia

Bibliografia

  1. Lee Y.I., Lee J.H., Hong S.H., Park Y. // Solid State Ionics, 204. V. 175(1–4) P. 687–690.
  2. Hasu H., Ito T., Hase H., Matsuoka J., Kamiya K. // J. Non-Cryst. Solids, 1996. V. 204. № 1. P. 78–82.
  3. Becker P. // Cryst. Res. Technol., 2003. V. 38. № 1. P. 74–82.
  4. Ehrt D. // Phys. Chem. Glasses, 2006. V. 47. № 6. P. 669–674.
  5. Motke S.G., Yawale S.P. // Bull. Mater. Sci., 2002. № 25. P. 75–78.
  6. Hellwig H., Liberity J., Bohaty L. // Solid State Commun., 1999. 109. P. 249.
  7. Chen C., Wu B., Jiang A., You G. // Scientia B. 1985. 26, P. 235.
  8. Egorysheva A.V., Skorikov V.M. // Inorg. Mater. 2009. V. 45. № 13. P. 1461.
  9. Fedorov P.P., Kokh A.E., Kononova N.G. // Russ. Chem. Rev. 2002. V. 714. P. 651.
  10. Egorysheva A.V., Volodin V.D., Skorikov V.M. // Inorganic Materials. 2008. V. 44. № 11. P. 1261–1265.
  11. Dubuis S., Messaddeq S.H., Ledemi Y., Côté A., Messaddeq Y. // Optical Materials Express, 2021. V. 11. № 8. P. 2560–2575.
  12. Egorysheva A.V., Burkov V.I., Kargin Yu.F., Plotnichenko V.G., Koltashev V.V. // Kristallografiya, 2005. V. 50. № 1. P. 165–174.
  13. Li L., Cheng L. // J. Chem. Phys., 2013. V. 138. 094312.
  14. Плехович А.Д., Ростокина Е.Е., Комшина М.Е., Балуева К.В., Игнатова К.Ф., Кутьин А.М. // Неорганические материалы. 2022. Т. 58. № 7. С. 763–770.
  15. Plekhovich A.D., Kut’in A.M., Rostokina E.E., Komshina M.E., Balueva K.V., Ignatova K.F., Shiryaev V.S. // Journal of Non-Crystalline Solids. 2022. V. 588. P. 121629.
  16. Gaussian R.A., Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A. et al. // Gaussian. Inc., Wallingford CT. 2003.
  17. Becke A.D. // The Journal of Chemical Physics, 1993. V. 98. P. 5648–5652.
  18. Lee C., Yang W., Parr R.G. // Physical Review B, 1988. № 37. P. 785–789.
  19. Miehlich B., Savin A., Stoll H., Preuss H. // Chemical Physics Letters. 1989. V. 157. P. 200–206.
  20. Srinivasaraghavan R., Chandiramouli R., Jeyaprakash B.G., Seshadri S. // Spectrochim. Acta, Part A. 2013. V. 102. P. 242–249.
  21. Egorysheva A.V., Skorikov V.M., Volodin V.D., Myslitskii O.E., Kargin Yu.F. // Russian Journal of Inorganic Chemistry. 2006. V. 51. № 12. P. 1956–1960.
  22. Krogh-Moe J. // J. Non-Cryst. Solids. 1969. V. 1. P. 269–284.
  23. Feng He, Zijun He, Junlin Xie, Yuhui Li // Am. J. Anal. Chem. 2014. V. 5. P. 1142–1150.
  24. Marzouk M.A., ElBatal H.A., Ezz ElDin F.M. // Silicon, V. 5. № 4. P. 283–295.
  25. Marzouk M.A., ElBatal F.H. // Appl. Phys. A. 2014. V. 115. P. 903–912.
  26. Chen F. // J. Wuhan Univ. Technol.-Mat. Sci. 2009. V. 24. P. 716–720.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (125KB)
3.

Baixar (54KB)
4.

Baixar (71KB)
5.

Baixar (45KB)
6.

Baixar (59KB)
7.

Baixar (69KB)
8.

Baixar (59KB)
9.

Baixar (36KB)
10.

Baixar (130KB)
11.

Baixar (175KB)
12.

Baixar (268KB)
13.

Baixar (232KB)
14.

Baixar (376KB)
15.

Baixar (117KB)
16.

Baixar (157KB)
17.

Baixar (94KB)

Declaração de direitos autorais © С.Д. Плехович, А.Д. Плехович, А.М. Кутьин, А.В. Будруев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies