Development of a Kinetic Model for the Direct Oxidation of Benzene to Phenol by Oxygen in Dielectric Barrier Discharge

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A simplified model of the process of benzene oxidation by oxygen in a dielectric barrier discharge has been developed. A kinetic scheme of oxidation is proposed that reflects the real chemistry of the process. The simulation results confirm the earlier assumptions about the main stages of the benzene oxidation process with oxygen.

Sobre autores

A. Ochered’ko

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: andrew@ipc.tsc.ru
Tomsk, 634055 Russia

A. Leshchik

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: andrew@ipc.tsc.ru
Tomsk, 634055 Russia

S. Kudryashov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Email: andrew@ipc.tsc.ru
Tomsk, 634055 Russia

A. Ryabov

Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: andrew@ipc.tsc.ru
Tomsk, 634055 Russia

Bibliografia

  1. Fridman A. Plasma chemistry. New York: Cambridge University Press, 2012. 978 p.
  2. Самойлович В.Г., Гибалов В.И., Козлов К.В. Физическая химия барьерного разряда. Москва: МГУ, 1989. 174 с.
  3. Kogelschatz U. // Plasma Chem. Plasma P. 2003. V. 23. № 1. P. 1.
  4. Кудряшов С.В., Рябов А.Ю., Сироткина Е.Е. и др. // Химия высоких энергий. 2003. Т. 37. № 3. С. 220.
  5. Kudryashov S., Ryabov A., Shchyogoleva G. // J. Phys. D. Appl. Phys. 2016. V. 49. P. 025205.
  6. Ochered’ko A.N., Kudryashov S.V., Ryabov A.Yu., et al. // High Energ. Chem. 2022. V. 56. № 4. P. 284.
  7. Kraus M., Egli W., Haffner K., et al. // Phys. Chem. Chem. Phys. 2002. V. 4. № 4. P. 668.
  8. Lovascio S., Blin-Simiand N., Magne L., et al. // Plasma Chem. Plasma P. 2015. V. 35. № 2. P. 279–301.
  9. Istadi I., Amin N.A.S. // Chem. Eng. Sci. 2007. V. 62. № 23. P. 6568.
  10. Yang Y. // Plasma Chem. Plasma P. 2003. V. 23. № 2. P. 283.
  11. Non-thermal plasma techniques for pollution control / ed. Penetrante B.M., Schultheis S.E. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. 421 p.
  12. Viehland database. URL: http://www.lxcat.net (дата обращения 25.04.2023).
  13. Bugaev S.P., Kozyrev A.V., Kuvshinov V.A., et al. // Plasma chem. Plasma P. 1998. V. 18. № 2. P. 247.
  14. Kovács T. // Plasma Ñhem. Plasma P. 2009. V. 30. № 1. P. 207.
  15. Hagelaar G.J.M., Pitchford L.C. // Plasma Sources Sci. T. 2005. V. 14. № 4. P. 722.
  16. Kintecus. URL: www.kintecus.org. (дата обращения: 25.04.2023).
  17. Taatjes C.A., Osborn D. L., Selby T.M., et al. // J. Phys. Chem. A. 2010. V. 114. № 9. P. 3355.
  18. Tanaka K., Ando M., Sakamoto Y., et al. // Int. J. Chem. Kinet. 2012. V. 44. P. 41.
  19. Atkinson R., Baulch D.L., Cox R.A., et al. // Atmos. Chem. Phys. 2004. V. 4. № 6. P. 1461.
  20. Turányi T., Nagy T., Zsély I.G., et al. // Int. J. Chem. Kinet. 2012. V. 44. № 5. P. 284.
  21. Atkinson R., Baulch D.L., Cox R.A., et al. // J. Phys. Chem. Ref. Data. 1989. V. 18. № 2. P. 881.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (133KB)

Declaração de direitos autorais © А.Н. Очередько, А.В. Лещик, С.В. Кудряшов, А.Ю. Рябов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies