PLASMA-CHEMICAL SYNTHESIS AND STUDY OF THE MORPHOLOGY OF IGZO THIN FILMS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, for the first time, the plasma-enhanced chemical vapor deposition (PECVD) method was used to obtain thin films of InGaZnO (IGZO) composition of various stoichiometry, morphology and phase composition. The films were synthesized using the setup described in detail in our works [1–5]. The initial substances were elementary high-purity In, Ga and Zn, the carrier gases were Ar and H2, and a mixture of (Ar–H2–O2) was used as a plasma-forming gas. The process of plasma-enhanced chemical synthesis was studied by the method of optical emission diagnostics. The mechanisms of the plasma-enhanced process were proposed. The chemical composition of the samples was determined by energy-dispersive X-ray microanalysis. The obtained samples were also examined by scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical profilometry. The electrical properties of the obtained films – type, mobility and concentration of carriers – were determined by Hall effect measurements.

About the authors

L. A. Mochalov

Lobachevsky State University of Nizhny Novgorod; Nizhny Novgorod State Technical University named after R.E. Alekseev

Email: slapovskaya@unn.ru
Nizhny Novgorod; Nizhny Novgorod

S. V. Telegin

Lobachevsky State University of Nizhny Novgorod

Email: slapovskaya@unn.ru
Nizhny Novgorod

E. A. Slapovskaya

Lobachevsky State University of Nizhny Novgorod

Email: slapovskaya@unn.ru
Nizhny Novgorod

A. V. Knyazev

Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: slapovskaya@unn.ru
Nizhny Novgorod

References

  1. Мочалов Л.А., Чурбанов М.Ф., Вельмужов А.П., Лобанов А.С., Корнев Р.А., Сенников Г.П. Получение стекол в системе Ge–S–I методом плазменно-химического осаждения из газовой фазы // Оптические материалы № 46, С. 310-313
  2. Мочалов Л., Логунов А., Маркин А., Китнис А., Воротынцев В. Характеристики пленок халькогенидов на основе Te зависят от параметров процесса PECVD // Оптическая и квантовая электроника № 52, С. 1–12.
  3. Мочалов Л.А., Лобанов А.С., Нежданов А.В., Костров А.В., Воротынцев В.М. Получение стекол Ge–S–I и Ge–Sb–S–I методом плазменно-химического осаждения из газовой фазы // Журнал некристаллических твердых веществ № 423, С. 76-80.
  4. Пиртон, Мочалов Л., Логунов А., Кудряшов М., Прохоров И., Сазанова Т., Юнин П., Пряхина В., Воротунцев И., Малышев В.. Гетероэпитаксиальный рост тонких пленок Ga2O3 различного фазового состава при окислении Ga в водородно-кислородной плазме // Journal of Solid State Science and Technology Т. 10. № 7., 073002.
  5. Мочалов Л., Дорош Д., Коханович М., Логунов А., Летнянчик А., Старостин Н., Зеленцов С., Бореман Г., Воротынцев В.. Оптическая эмиссионная спектроскопия плазменного осаждения пленок сульфида свинца // Спектрохимия, часть А: Молекулярная и биомолекулярная спектроскопия № 241, 118629.
  6. Murat A., Adler A.U., Mason T.O., Medvedeva J.E. Carrier generation in multicomponent wide-bandgap oxides: InGaZnO4. // J Am Chem Soc. 2013. V. 135. № 15. P. 5685–5692. https://doi.org/10.1021/ja311955g
  7. Lee, Chul Hee, Kim, Tae Hyung, Lee, Seung Min, Bae, Jeong Wun, Kim, Kyong Nam, Yeom, Geun Young. Properties of IGZO Film Deposited by Ar/O2 Inductively Coupled Plasma Assisted DC Magnetron Sputtering // Science of Advanced Materials. V. 7. № 9. P. 118–1192. https://doi.org/х10.1166/sam.2017.2886
  8. Kosuke Takenaka et al. // Jpn. J. Appl. Phys. 2023. 62 SL1018. https://doi.org/10.35848/1347-4065/acdb7e
  9. Amusan A., Etor D., Electrical Characterization of InGaZnO-Based Thin Film Transistor Fabricated by Three-Mask Process // FUOYE Journal of Engineering and Technology (FUOYEJET). 2023. V. 8. № 3. P. 294–299. https://doi.org/10.46792/fuoyejet.v8i3.1038
  10. Sanal K.C., Majeesh M., Jayaraj M.K. Growth of IGZO thin films and fabrication of transparent thin film transistor by RF magnetron sputtering, Proc. SPIE 8818, Nanostructured Thin Films VI, 881814 (19 September 2013). https://doi.org/10.1117/12.2023865
  11. Li Y., Zhou Y., Guo C., Zou S., Lan L., Gong Z. Noble-Metal-Free, Polarity-Switchable IGZO Schottky Barrier Diodes. // IEEE Transactions on Electron Devices. 2023. V. 70. № 6. P. 3057–3063. https://doi.org/10.1109/TED.2023.3267755
  12. J. Korean Ceram. Soc. 2016;53 (1): 110-115. Publication Date (Web): 2016 January 31 (Paper). https://doi.org/10.4191/kcers.2016.53.1.110
  13. Wonjun Shin, Daehee Kwon, Minjeong Ryu, Joowon Kwon, Seongbin Hong, Yujeong Jeong, Gyuweon Jung, Jinwoo Park, Donghee Kim, Jong-Ho Lee. Effects of IGZO film thickness on H2S gas sensing performance: Response, excessive recovery, low-frequency noise, and signal-to-noise ratio. // Sensors and Actuators B: Chemical, Volume. 2021. № 344. 130148. https://doi.org/10.1016/j.snb.2021.130148
  14. Bizak Z., Faleiros M.C., Vijjapu M.T., Yaqoob U. and Salama K.N.. Highly Sensitive Wireless NO2 Gas Sensing System. // IEEE Sensors Journal, 2023. V. 23. № 14. P. 15667–15674. https://doi.org/10.1109/JSEN.2023.3281270
  15. Rawat Jaisutti, Jaeyoung Kim, Sung Kyu Park, and Yong-Hoon Kim. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors. // ACS Applied Materials & Interfaces . 2016. V. 8. № 31. P. 20192–20199. https://doi.org/10.1021/acsami.6b05724
  16. Fangzhou Li, You Meng, Ruoting Dong, SenPo Yip, Changyong Lan, Xiaolin Kang, Fengyun Wang, Kwok Sum Chan, and Johnny C. Ho. High-Performance Transparent Ultraviolet Photodetectors Based on InGaZnO Superlattice Nanowire Arrays. // ACS Nano. 2019. V. 13. № 10. P. 12042–12051. https://doi.org/10.1021/acsnano.9b06311
  17. Kishore R., Vishwakarma K. and Datta A. Spectral Response of Solar Blind M-S-M Photodetector With InGaZnO Film Sputter Deposited in Diluted Oxygen Ambience. // IEEE Journal of Quantum Electronics. 2023. V. 59. № 4. P. 1–7. Art no. 4000107. https://doi.org/10.1109/JQE.2023.3278263
  18. Huang W.-C., Tseng Z.-C., Hsueh W.-J., Liao S.-Y. and Huang C.-Y. X-Ray Detectors Based on Amorphous InGaZnO Thin Films. // IEEE Transactions on Electron Devices, 2023. V. 7. № 7. P. 3690–3694. https://doi.org/10.1109/TED.2023.3279054
  19. Pereira M., Deuermeier J., Nogueira R., Carvalho P.A., Martins R., Fortunato E., Kiazadeh A.. 2000242, Noble-Metal-Free Memristive Devices Based on IGZO for Neuromorphic Applications. // Adv. Electron. Mater. 2020. № 6. 2000242. https://doi.org/10.1002/aelm.202000242
  20. Martins R.A., Carlos E., Deuermeier J., Pereira M.E., Martins R., Fortunato E., Kiazadeh A. Emergent solution based IGZO memristor towards neuromorphic applications. // J Mater Chem C Mater. 2020. V. 10. № 6. P. 1991–1998. https://doi.org/10.1039/d1tc05465a
  21. Tongzheng Li, Tongying Xu, Zhengyang Yao, Yanan Ding, Guoxia Liu, Fukai Shan. Highly sensitive biosensor based on IGZO thin-film transistors for detection of Parkinson's disease. // Appl. Phys. Lett. 2023. V. 122. № 24. 243701. https://doi.org/10.1063/5.0151300
  22. P. G. Bahubalindruni et al. Rail-to-Rail Timing Signals Generation Using InGaZnO TFTs For Flexible X-Ray Detector. // IEEE Journal of the Electron Devices Society, 2020. V. 8. P. 157–162. https://doi.org/10.1109/JEDS.2020.2971277
  23. Troughton J.G., Downs P., Price R., Atkinson D.. Densification of a-IGZO with low-temperature annealing for flexible electronics applications. // Appl. Phys. Lett. 2017. V. 110. № 1. 011903. https://doi.org/10.1063/1.4973629
  24. Самарин А. Новая дисплейная технология IGZO компании Sharp // Компоненты и технологии. 8. 2013. С. 17–22.
  25. Huang S., Jin J., Kim J., Wu W., Song A. and Zhang J. IGZO Source-Gated Transistor for AMOLED Pixel Circuit. // IEEE Transactions on Electron Devices, 2023. V. 70. № 7. P. 3637–3642. https://doi.org/10.1109/TED.2023.3274501
  26. Sheng-Yao Huang et al. // 2011 Electrochem. Solid-State Lett. 14 H177. https://doi.org/10.1149/1.3534828
  27. Wonjun Shin, Daehee Kwon, Minjeong Ryu, Joowon Kwon, Seongbin Hong, Yujeong Jeong, Gyuweon Jung, Jinwoo Park, Donghee Kim, Jong-Ho Lee. Effects of IGZO film thickness on H2S gas sensing performance: Response, excessive recovery, low-frequency noise, and signal-to-noise ratio. // Sensors and Actuators B: Chemical, . 2021. V. 344. https://doi.org/10.1016/j.snb.2021.130148
  28. Schellander Y., Winter M., Schamber M., Mun­kes F., Schalberger P., Kuebler H., et al. Ultraviolet photodetectors and readout based on a-IGZO semiconductor technology. // J Soc Inf Display. 2023. V. 31. № 5. P. 363–372. https://doi.org/10.1002/jsid.1202
  29. Li Y., Zhou Y., Guo C., Zou S., Lan L. and Gong Z., Noble-Metal-Free, Polarity-Switchable IGZO Schottky Barrier Diodes. // IEEE Transactions on Electron Devices, 2023. V. 70. № 6. P. 3057–3063. https://doi.org/10.1109/TED.2023.3267755
  30. Katie Stallings, Jeremy Smith, Yao Chen, Li Zeng, Binghao Wang, Gabriele Di Carlo, Michael J. Bedzyk, Antonio Facchetti, and Tobin J. // Marks ACS Applied Materials & Interfaces. 2021. V. 13. № 13. P. 15399–15408. https://doi.org/10.1021/acsami.1c00249
  31. Tongzheng Li, Tongying Xu, Zhengyang Yao, Yanan Ding, Guoxia Liu, Fukai Shan. Highly sensitive biosensor based on IGZO thin-film transistors for detection of Parkinson's disease. // Appl. Phys. Lett. 2023. V. 122. № 24. P. 243701. https://doi.org/10.1063/5.0151300
  32. Zhou H.T., Li L., Chen H.Y., Guo Z., Jiao S.J., Sun W.J.. . Realization of a fast-response flexible ultraviolet photodetector employing a metal-semiconductor-metal structure InGaZnO photodiode. RSC ADVANCES. 2015. https://doi.org/10.1039/c5ra17475a
  33. Jiang D.L., Li L., Chen H.Y., Gao H., Qiao Q., Xu Z.K., Jiao S.J. Realization of unbiased photoresponse in amorphous InGaZnO ultraviolet detector via a hole-trapping process. // Appl. Phys. Lett. 2015. V. 106. № 17. P.1171103. https://doi.org/10.1063/1.4918991
  34. Мочалов Л.А., Кудряшов М.А., Прохоров И.О., Вшивцев М.А., Кудряшова Ю.П., Слаповская Е.А., Князев А.В. Исследование плазмохимического синтеза тонких пленок Ga2O3, легированных Zn, за одну стадию в плазме // Химия высоких энергий. 2023. Т. 57. № 6. С. 509–514.
  35. Мочалов Л.А., Теллеген С.В., Слаповская Е.А. Получение и исследование свойств тонких пленок IGZO, полученных методом PECVD // Фотоника России. 2025. Т. 19. № 1. С. 1–9.
  36. Алмаев А.В., Яковлев Н.Н., Черников Е.В., Ерзакова Н.Н., Мочалов Л.А., Кудряшов М.А., Кудряшова Ю.П., Несов С.Н. Газочувствительность пленок PECVD β-Ga2O3 с большой активной поверхностью // Химия и физика материалов. 2024. Т. 320. С. 129430.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».