Spectral and photochemical properties of styrylquinoline–carbazole dyad in neutral and protonated forms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Spectral-luminescent and photochemical properties of neutral and protonated forms of styrylquinoline – carbazole dyad SQ3Cbz, in which the carbazole fragment (Cbz) is linked to the 2-styrylquinoline (SQ) residue via an oxytrimethylene bridge, were studied. It was shown that in both forms of SQ3Cbz strong quenching of the Cbz fragment fluorescence is observed due to energy transfer to the SQ fragment via the Förster mechanism. In the protonated form of the dyad, where the proton is localized on the SQ fragment, a significant decrease in the quantum yields of trans-cis photoisomerization and fluorescence of the SQ fragment is observed, as well as a blue shift of its emission band compared to the model SQ chromophore. It is suggested that the observed effects are related to the formation of folded dyad conformers in which the SQ chromophore has a more rigid structure and/or the process of electron transfer from Cbz to the protonated SQ fragment. DFT calculations predict the possibility of the formation of folded dyad conformers that are stabilized by π-stacking interactions between Cbz and SQ fragments.

About the authors

M. F. Budyka

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Email: budyka@icp.ac.ru
Chernogolovka, Russia

V. M. Li

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Chernogolovka, Russia

T. N. Gavrishova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry

Chernogolovka, Russia

P. V. Kitina

Faculty of Basic Physicochemical Engineering, Moscow State University

Moscow, Russia

I. V. Soulimenkov

Branch of Semenov Federal Research Center for Chemical Physics

Chernogolovka, Russia

References

  1. Shen J., Masaoka H., Tsuchiya K., Ogino K. // Polymer J. 2008. V. 40. P. 421.
  2. Gao L., Schloemer T.H., Zhang F., Chen Xi., Xiao Ch., Zhu K., Sellinger A. // Appl. Energy Mater. 2020. V. 3. P. 4492.
  3. Liu H., He B., Lu H., Tang R., Wu F., Zhong Ch. et al. // Sustainable Energy Fuels. 2022. V. 6. P. 371.
  4. Баран А., Плотниеце А., Соболев А., Виганте Б., Гос­тева М., Ольховик В. // ХГС. 2012. С. 305.
  5. Zheng Ya., Huo Ji., Xiao Sh., Shi H., Ma D., Tang B.Zh. // Org. Electronics. 2022. V. 101. P. 106411.
  6. Kwon H., Kang S., Park Su., Park Sa., Lee H., Lee S. et al. // Mol. Cryst. Liquid Cryst. 2023. V. 762. P. 21.
  7. Gu J., Yulan W., Chen W.-Q., Dong X.-Z., Duan X.-M., Kawata S. // New J. Chem. 2007. V. 31. P. 63.
  8. Wang Z., Nesterov V.N., Borbulevych O.Y., Clark R.D., Antipin M.Y., Timofeeva T. V. // Acta Crystallogr. 2001. V. C57. P. 1343.
  9. Oloub M., Hosseinzadeh R., Tajbakhsh M., Mohadje­ra­ni M. // RSC Adv. 2022. V. 12. P. 26201.
  10. Marotta G., Reddy M.A., Singh S.P., Islam A., Han L., De Angelis F. et al. // Appl. Mater. Interfaces. 2013. V. 5. P. 9635.
  11. Balsukuri N., Gupta I. // Dyes and Pigments. 2017. V. 144. P. 223.
  12. Cui Ya., Li F., Zhang Xi. // Chem. Commun. 2021. V. 57. P. 3275.
  13. Будыка М.Ф., Поташова Н.И., Гавришова Т.Н., Ли В.М. // Химия высоких энергий. 2008. Т. 42. С. 497.
  14. Будыка М.Ф., Поташова Н.И., Гавришова Т.Н., Ли В.М. // Химия высоких энергий. 2012. Т. 46. С. 369.
  15. Wu Y., Zhu Y., Yao C., Zhan J., Wu P., Han Z. et al. // J. Mater. Chem. C. 2023. V. 11. P. 15393.
  16. Ли В.М., Гавришова Т.Н., Будыка М.Ф. // ЖОрХ. 2012. Т. 48. С. 826.
  17. Li Y.-H., Zhou B., Shi Yi-M., Xun Yu-P., Yang Y.-H., Yang L.-J. // Chem. Biol. Drug Des. 2018. V. 92. P. 1206.
  18. Гавришова Т.Н., Ли В.М., Садыкова К.Ф., Будыка М.Ф. // Известия АН Сер. Хим. 2011. С. 1470.
  19. Liu L.-X., Wang X.-Q., Zhou B., Yang L.-J., Li Y., Zhang H.-B., Yang X.-D. // Sci. Rep. 2015. V. 5. P. 13101.
  20. Dodonov A.F., Kozlovski V.I., Soulimenkov I.V., Razni­kov V.V., Loboda A.V., Zhen Z. et al. // Eur. J. Mass Spectrom. 2000. V. 6. P. 481.
  21. Becker H. D. // Chem. Rev. 1993. V. 93. P. 145.
  22. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian, Inc., Wallingford CT, 2013.
  23. Mazzucato U., Momicchioli F. // Chem. Rev. 1991. V. 91. P. 1679.
  24. Braslavsky S.E., Fron E., Rodriguez H.B., Roman E.S., Scholes G.D., Schweitzer G. et al. // Photochem. Photobiol. Sci. 2008. V. 7. P. 1444.
  25. Chen C., Chong K.C., Pan Y., Qi G., Xu S., Liu B. // ACS Materials Lett. 2021. V. 3. P. 1081.
  26. Fischer E. // J. Phys. Chem. 1967. V. 71. P. 3704.
  27. Будыка М.Ф., Гавришова Т.Н., Ли В.М., Поташова Н.И. // Химия высоких энергий. 2016. Т. 50. С. 208.
  28. Galiazzo G., Bortolus P., Gennari G. // Gazz. Chim. Ital. 1990. V. 120. P. 581.
  29. Deschryver F.C., Collart P., Goedeweeck R., Swin­nen A.M., Vandendriessche J., Vanderauweraer M. // Acc. Chem. Res. 1987. V. 20. P. 159.
  30. Разумов В.Ф., Алфимов М.В. // Журн. науч. и прикл. фотографии. 2003. Т. 48. С. 28.
  31. Budyka M.F., Gavrishova T.N., Li V.M., Potashova N.I., Fedulova J.A. // Spectrochim. Acta Part A. 2022. V. 267. P. 120565.
  32. Budyka M.F., Gavrishova T.N., Li V.M., Tovstun S.A. // Spectr. Acta Part A. 2024. V. 320. P. 124666.
  33. Budyka M.F. // Int J Quantum Chem. 2024. V. 124. e27264.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).