Parametric analysis of plasmochemical processes in electrodeless HFI and SHF discharges in iodine vapor
- Authors: Saifutdinova A.A.1, Makushev A.A.1, Sysoyev S.S.2, Saifutdinov A.I.1
-
Affiliations:
- Kazan National Research Technical University named after A.N. Tupolev – KAI
- St. Petersburg State University
- Issue: Vol 58, No 5 (2024)
- Pages: 412-420
- Section: PLASMA CHEMISTRY
- URL: https://journals.rcsi.science/0023-1193/article/view/280941
- DOI: https://doi.org/10.31857/S0023119324050102
- EDN: https://elibrary.ru/TXIUOR
- ID: 280941
Cite item
Abstract
In this paper, parametric studies of kinetic processes of electrodeless high-frequency induction (HFI) and superhigh-frequency (SHF) discharges in plasma in iodine have been carried out within the framework of a global model. The dynamics of the formation of the component composition of the plasma has been obtained for different modes. It is shown that at small times an ion-ion plasma is formed, and at times from a few fractions to units of milliseconds the transition from ion-ion to electron-ion plasma occurs. The model made it possible to determine the most optimal modes of iodine plasma generation in modern electric rocket engines.
About the authors
A. A. Saifutdinova
Kazan National Research Technical University named after A.N. Tupolev – KAI
Author for correspondence.
Email: aliya_2007@list.ru
Russian Federation, Kazan
A. A. Makushev
Kazan National Research Technical University named after A.N. Tupolev – KAI
Email: aliya_2007@list.ru
Russian Federation, Kazan
S. S. Sysoyev
St. Petersburg State University
Email: aliya_2007@list.ru
Russian Federation, St. Petersburg
A. I. Saifutdinov
Kazan National Research Technical University named after A.N. Tupolev – KAI
Email: as.uav@bk.ru
Russian Federation, Kazan
References
- Levchenko I. et al. // Applied Physics Reviews. 2018. V. 5. №. 1.
- Kopacz J.tR., Herschitz R., Roney J. //Acta Astronautica. 2020. V. 170. P. 93–105.
- Levchenko I. et al. // Nature communications. 2018. V. 9. №. 1. P. 879.
- Han A., Meng T., Jia S., Tong Y., Ning Z. // Vacuum. 2024. V. 221. P. 112867.
- Yu D. et al. // Plasma Sources Science and Technology. 2017. V. 26. №. 4. P. 04LT02.
- Tverdokhlebov O., Semenkin A. // 37th Joint propulsion conference and exhibit. 37th Joint propulsion conference and exhibit. 2001. P. 3350.
- Szabo J., Pote B., Paintal S., Robin M., Hiller A., Branam R.D., Huffman R.E. // Journal of Propulsion and Power. – 2012. V. 28. №. 4. P. 848–857.
- Dietz P., Becker F., Keil K., Holste K., Klar P.J. // 36th International Electric Propulsion Conference, Vienna, Austria. 2019.
- Performance of an iodine-fueled radio-frequency ion-thruster //The European Physical Journal D. 2018. V. 72. P. 1–7.
- Martinez J.M., Rafalskyi D., Zorzoli Rossi E., Aanesland A. An off-axis iodine propulsion system for the robusta-3A mission. 2020.
- Marmuse F., Lucken R., Drag C., Booth J.–P., Bourdon A., Chabert P., Aanesland A. // 36th International Electric Propulsion Conference (IEPC 2019). 2019.
- Yang J., Jia S., Zhang Z., Zhang X., Jin T., Li L., Cai Y., Cai J. // Plasma Science and Technology. 2020. V. 22. №. 9. P. 094006.
- Niu X., Li X., Liu H., Yu D. // The European Physical Journal D. 2019. V. 73. P. 1–8.
- Mazouffre S. //Plasma Sources Science and Technology. 2016. V. 25. №. 3. P. 033002.
- Saifutdinova A.A. et al. //IEEE Transactions on Plasma Science. 2022. V. 50. №. 4. P. 1144–1156.
- Saifutdinov A.I., Kustova E.V. // Journal of Applied Physics. 2021. V. 129. №. 2.
- Saifutdinov A., Timerkaev B. // Nanomaterials. 2023. V. 13. №. 13. P. 1966.
- Saifutdinov A.I. // Plasma Sources Science and Technology. 2022. V. 31. №. 9. P. 094008.
- Grondein P. et al. //Physics of Plasmas. 2016. V. 23. №. 3.
- Levko D., Raja L.L. // Journal of Applied Physics. 2021. V. 130. №. 17.
- Ambalampitiya H.B., Hamilt K.R., Zatsarinny O., Bartschat K., Turner M.A., Dzarasova A., Tennyson J. // Atoms. 2021. Т. 9. №. 4. С. 103.
- Kramida A., Ralchenko Y., Reader J., Team N.A. NIST Atomic Spectra Database (ver. 5.9), National Institute of Standards and Technology, Gaithersburg. MD. 2021. https://physics.nist.gov/asd
- Greaves C. //Journal of Electronics and Control. 1964. V. 17. P. 171–180.
- Yeung T.H. Y. Sayers J. // Proceedings of the Physical Society. Section B. 1957. V. 70. P. 663.
- Saifutdinov A.I. et al. //High Energy Chemistry. 2023. V. 57. №. 1. P. 35–52.
- Kemaneci E., Carbone E., Booth J.P., Graef W., van Dijk J., Kroesen G. // Plasma Sources Science and Technology. 2014. V. 23. №. 4. P. 045002.
- Tejero-del-Caz A. et al. // Plasma Sources Science and Technology. 2019. Т. 28. №. 4. С. 043001.
- Chabert P., Braithwaite N. Physics of radio-frequency plasmas. Cambridge University Press, 2011. P. 385.
Supplementary files
