On the ionization energy of the atomic gold ion Au2+
- Authors: Boltnev R.E.1,2, Karabulin A.V.1,3, Krushinskaya I.N.2, Pelmenev A.A.2, Matyushenko V.I.2
-
Affiliations:
- Joint Institute for High Temperatures of the Russian Academy of Sciences
- Branch of the N.N. Semenov Federal Research Center for Chemical Physics
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
- Issue: Vol 58, No 4 (2024)
- Pages: 319-321
- Section: RADIATION CHEMISTRY
- URL: https://journals.rcsi.science/0023-1193/article/view/274663
- DOI: https://doi.org/10.31857/S0023119324040111
- EDN: https://elibrary.ru/TPIHNL
- ID: 274663
Cite item
Abstract
Analysis of the luminescence spectra of the plasma formed by laser ablation of a gold target immersed in superfluid helium at a laser power density below the breakdown threshold of liquid helium shows that the ionization energy of the Au2+ ion should be at least 34 eV.
Full Text

About the authors
R. E. Boltnev
Joint Institute for High Temperatures of the Russian Academy of Sciences; Branch of the N.N. Semenov Federal Research Center for Chemical Physics
Author for correspondence.
Email: boltnev@gmail.com
Russian Federation, Moscow; Chernogolovka
A. V. Karabulin
Joint Institute for High Temperatures of the Russian Academy of Sciences; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS
Email: boltnev@gmail.com
Russian Federation, Moscow; Chernogolovka
I. N. Krushinskaya
Branch of the N.N. Semenov Federal Research Center for Chemical Physics
Email: irkrush@gmail.com
Russian Federation, Chernogolovka
A. A. Pelmenev
Branch of the N.N. Semenov Federal Research Center for Chemical Physics
Email: boltnev@gmail.com
Russian Federation, Chernogolovka
V. I. Matyushenko
Branch of the N.N. Semenov Federal Research Center for Chemical Physics
Email: boltnev@gmail.com
Russian Federation, Chernogolovka
References
- NIST Atomic Spectra Database, NIST Standard Reference Database 78, https://physics.nist.gov/PhysRefData/ASD/ionEnergy.html
- Korgaonkar A.V., Gopalaraman C.P., and Rohatgi V.K. // Int. J. Mass Spectrom. and Ion Physics. 1981. V. 40. P. 127. https://doi.org/10.1016/0020-7381(81)80036-8
- Boltnev R.E., Karabulin A.V., Krushinskaya I.N., Pelmenev A.A., Matyushenko V.I. // High Energy Chem. 2023. V. 57. P. 168. https://doi.org/10.1134/S0018143923020066
- Sirisky S., Yang Y., Wei W., Maris H.J. // J. Low Temp. Phys. 2017. V. 189. № 1–2. P. 53. https://doi.org/10.1007/s10909-017-1786-y
- Tokaryk D.W., Brooks R.L., Hunt J.L. // Phys. Rev. A. 1993. V. 48. P. 364. https://doi.org/10.1103/PhysRevA.48.364
- Benderskii A.V., Zadoyan R., Schwentner N., Apkarian V.A. // J. Chem. Phys. 1999. V. 110. P. 1542. https://doi.org/10.1063/1.477796
Supplementary files
