Исследование роли конформации олигомеров политиофена на их электронные и магнитные свойства

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Из сопоставления данных, теоретически полученных с использованием методов теории функционала плотности (ТФП) и электронного парамагнитного резонанса (ЭПР) с экспериментальными результатами установлены корреляции электронных и магнитно-резонансных параметров спиновых носителей заряда в олигомерах потитиофена с разной степенью их полимеризации и конформации.

Full Text

Restricted Access

About the authors

В. И. Криничный

Федеральный исследовательский центр проблем химической физики и медицинской химии РАН (ФИЦ ПХФ МХ РАН)

Author for correspondence.
Email: kivi@icp.ac.ru
Russian Federation, проспект академика Н.Н. Семенова, 1, Черноголовка, 142432

References

  1. Hu W., ed. Organic Optoelectronics. 2013, Wiley-VCH Verlag Weinheim. 507.
  2. Petty M.C. Organic and Molecular Electronics: From Principles to Practice. 2nd: Wiley-Blackwell, 2018. 512 р.
  3. Khalifeh S. Polymers in Organic Electronics. Polymer Selection for Electronic, Mechatronic, and Optoelectronic Systems. 1st – Toronto: ChemTec Publishing, 2020. 616 р.
  4. Chatterjee A., Mukhopadhyay S., eds. Polarons and Bipolarons: An Introduction. Chapman & Hall Pure and Applied Mathematics. 2018. CRC Press: Boca Raton. 475.
  5. Zade S.S., Bendikov M. // The Journal of Physical Chemistry B. 2006. V. 110. № 32. pp. 15839–15846.
  6. Brazovskii S.A., Matveenko S.I. // J. Exper. Theor. Phys. 1992. V. 102. № 1. pp. 146–162.
  7. Elsenbaumer R.L., Shacklette L.W. Phenylene-Based conducting polymers // Handbook of Conducting Polymers . V. 1. Scotheim T.E. New York: Marcel Dekker, Inc., 1986. pp. 213–263.
  8. Devreux F., Genoud F., Nechtschein M., Villeret B. // Electronic Properties of Conjugated Polymers V. 76. Kuzmany H., Mehring M., Roth S. Berlin: Springer-Verlag, 1987. pp. 270–276.
  9. Westerling M., Osterbacka R., Stubb H. // Phys. Rev. B. 2002. V. 66. № 16. P. 165220.
  10. Millefiori S., Alparone A., Millefiori A. // J. Heterocycl. Chem. 2000. V. 37. pp. 847–853.
  11. Sariciftci N.S. // Synth. Met. 1996. V. 80. № 2. pp. 137–141.
  12. Kohn W. // Rev. Mod. Phys. 1999. V. 71. № 5. pp. 1253–1266.
  13. Brédas J.L., Themans B., Fripiat J.G., Andre J.M., Chance R.R. // Phys. Rev. B. 1984. V. 29. № 12. pp. 6761–6773.
  14. Neeze F. // WIREs Comput. Mol. Sci. 2012. V. 2. № 1. pp. 73–78.
  15. Niklas J., Mardis K.L., Banks B.P., Grooms G.M., Sperlich A., Dyakonov V., Beauprě S., Leclerc M., Xu T., Yue L., Poluektov O.G. // Phys. Chem. Chem. Phys. 2013. V. 15. № 24. pp. 9562–9574.
  16. Van Landeghem M., Maes W., Goovaerts E., Van Doorslaer S. // J. Magn. Reson. 2018. V. 288. p. 1–10.
  17. Krinichnyi V.I., Yudanova E.I., Denisov N.N. // J. Phys. Chem. C. 2022. V. 126. № 9. P. 4495–4507.
  18. Alexandrov A.S. Polarons in Advanced Materials. 2007. P. 672.
  19. Eglitis R.I. // Int. J. Mod Phys B. 2014. V. 28. № 17. P. 1430009.
  20. Mulliken R.S. // J. Chem. Phys. 2004. V. 23. № 12. P. 2343–2346.
  21. Hanwell M.D., Curtis D.E., Lonie D.C., Vandermeersch T., Zurek E., Hutchison G.R. // Journal of Cheminformatics. 2012. V. 4. № 1. P. 17.
  22. Stoll S., Schweiger A. // J. Magn. Reson. 2006. V. 178. № 1. pp. 42–55.
  23. Kuroda S., Marumoto K., Sakanaka T., Takeuchi N., Shimoi Y., Abe S., Kokubo H., Yamamoto T. // Chem. Phys. Lett. 2007. V. 435. № 4-6. pp. 273–277.
  24. Kim D.H., Park Y.D., Jang Y.S., Yang H.C., Kim Y.H., Han J.I., Moon D.G., Park S.J., Chang T.Y., Chang C.W., Joo M.K., Ryu C.Y., Cho K.W. // Adv. Funct. Mater. 2005. V. 15. № 1. pp. 77–82.
  25. Sensfuss S., Al-Ibrahim M. Optoelectronic properties of conjugated polymer/fullerene binary pairs with variety of LUMO level differences // Organic Photovoltaics: Mechanisms, Materials, and Devices (Optical Engineering) Sun S.S., Sariciftci N.S. – Boca Raton: CRC Press, 2005. pp. 529–557.
  26. Enengl C., Enengl S., Pluczyk S., Havlicek M., Lapkowski M., Neugebauer H., Ehrenfreund E. // ChemPhysChem. 2016. V. 17. № 23. pp. 3836–3844.
  27. Bernier P. The magnetic properties of conjugated polymers: ESR studies of undoped and doped systems // Handbook of Conducting Polymers V. 2. Scotheim T.E. New York: Marcel Dekker, Inc., 1986. pp. 1099–1125.
  28. Aguirre A., Gast P., Orlinskii S., Akimoto I., Groenen E.J.J., El Mkami H., Goovaerts E., Van Doorslaer S. // Phys. Chem. Chem. Phys. 2008. V. 10. № 47. pp. 7129–7138.
  29. Konkin A., Ritter U., Scharff P., Roth H.-K., Aganov A., Sariciftci N.S., Egbe D.A.M. // Synth. Met. 2010. V. 160. № 5–6. pp. 485–489.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evolution of the initial zone structure of neutral polythiophene (a) at leaving its chain of elementary charge |e|, accompanied by the formation of polarons P+* (b) or P-* (c) with the corresponding energy levels Ei in the forbidden zone.

Download (175KB)
3. Fig. 2. Relative charge (a) and electron spin (b) densities on hydrogen and sulfur atoms in neutral (a) and oxidized (b) 12-dimensional polythiophene (PT) oligomers optimized in the framework of density functional formalism/theory (DFT), calculated by the Malliken method in the Orca package environment using the B3LYP functional in conjunction with the EPRNMR module, as well as the EPRII basis sets for 1H and 12S atoms and TZVPP for 32S. In (b), an eight-strand polaron with a quinoid/trans conformation carrying spin S = 1/2 and elementary positive charge +e is depicted. The sums of both densities on all atoms (including also 12S not shown here) are zero (a) and one (b).

Download (472KB)
4. Fig. 3. Variation of charge (a, b, d, e, g, h) and spin (c, f, i) densities on hydrogen (circles), sulfur (triangles), and carbon (squares) nuclei along the main x-axis of neutral (unfilled dots) and oxidized (filled dots) within a 12-dimensional polythiophene oligomer (schematically shown above), optimized in the framework of the density functional formalism/theory (DFT), calculated by the Malliken method in the Orca program environment.

Download (597KB)
5. Fig. 4. Variation of the forbidden band width from the dimensionality of polythiophene oligomers optimized in the framework of the density functional formalism/theory (DFT) defined as the difference Eg = EHOMO - ELUMO of the corresponding VZMO and NSMO energy levels calculated in the Malliken approximation in the Orca package environment. In the upper part are plots of the isosurfaces of the indicated energy levels calculated for the 7-dimensional polythiophene oligomer. The upper solid, dashed and lower solid lines show the dependences calculated from equation (1) with the coefficients a0 = 2.078 eV, b = 5.89 eV, c = 1.67, a0 = 2.070 eV, b = 5.45 eV, c = 1.59 and a0 = 3.153 eV, b = 5.03 eV, c = 3.15, respectively.

Download (311KB)
6. Fig. 5. Dependence of the isotropic spin-spin superfine interaction constants, Aiso, and g-factor, giso, of polarons with spin S = 1/2 and elementary positive charge +e, on the chain length of the polythiophene oligomer, calculated in the Orca package environment using the B3LYP functional together with the EPRNMR module, as well as the EPRII basis sets for 1H and 12S atoms and TZVPP for 32S. The inset shows the 2-mm band EPR spectrum calculated for 12-mer oligothiophene using the EasySpin program and the corresponding data shown in Table 2. The lower and upper dependencies are calculated from Equation (1) with a0 = 0.47 MHz, b = 83.62 MHz, c = 1.17 and a0 = 2.00162, b = 8.71 ∙ 104, c = 5.31.

Download (271KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies