Deformation and Strength Properties of a Gamma-Irradiated Plasticized Binder Based on Low-Molecular-Weight Polydiene Urethane Rubbers

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of gamma-radiation doses of 50, 100, and 150 kGy on the deformation and strength properties of a plasticized binder based on low-molecular-weight polydiene urethane rubbers of the PDI-3B brand has been studied. To assess changes in the strength of the plasticized binder depending on the dose of gamma irradiation, the fracture energies were calculated at temperatures of 223, 295, and 323 K. At these test
temperatures, the conditional stress increased and deformation slightly decreased depending on the dose of gamma irradiation compared with those of the original sample. Sharp changes in the deformation and strength characteristics occurred at a test temperature of 223 K; the strength of the irradiated samples increased by a factor of more than 4, and the deformation decreased slightly compared to that of the original sample. This trend persisted with an increase in the test temperature, but the difference was almost halved. Such an effect of gamma irradiation on the test material can be explained by the prevalence of crosslinking over degradation

Sobre autores

E. Nurullaev

Perm National Research Polytechnic University

Email: ergnur@mail.ru
Perm, 614990 Russia

V. Oniskiv

Perm National Research Polytechnic University

Email: ergnur@mail.ru
Perm, 614990 Russia

L. Himenko

Perm National Research Polytechnic University

Email: ergnur@mail.ru
Perm, 614990 Russia

E. Ibragimova

Institute of Nuclear Physics, Academy of Sciences of the Republic of Uzbekistan

Autor responsável pela correspondência
Email: ergnur@mail.ru
Tashkent, 100214 Uzbekistan

Bibliografia

  1. Molanorouzi M., Mohaved S.O. // Polymer Degradation and Stability. 2016. V. 128. P. 115.
  2. Sousa F.D.B., Scuracchio C.H., Hu G.-H., Hoppe S. // Polymer Degradation and Stability. 2017. V. 138. P. 169.
  3. Xu O., Li M., Han S., Zhu Y., Zhang J. // Construction and Building Materials. 2021. V. 271. 121580.
  4. Ratnam C.T., Dubey K.A., Appadu S., Bhardwaj Y.K. // Recycling of Polymer Wastes by Radiation. Report of IAEA Technical Meeting. 2019. EVT1804861.Vienna, Austria. P. 24.
  5. Gohs U. Recycling of Polymer Wastes by Radiation // Report of IAEA Technical Meeting. 2019. EVT1804861. Vienna, Austria. P. 26.
  6. Gorbarev I.N., Vlasov S.I., Chulkov V.N., Bludenko A.V., Ponomarev A.V. // Radiat. Phys. Chem. 2019. V. 158. P. 64.
  7. Аллаяров С.Р., Диксон Д.А., Аллаяров Р.С. //Химия высоких энергий. 2020. Т. 54. № 4. С. 310.
  8. Гулиева Н.К., Гатамханова Г.М., Мустафаев И.И. // Химия высоких энергий. 2020. Т. 54. № 5. С. 370.
  9. Фазуллина Д.Д., Маврина Г.В., Шайхиев И.Г. // Электронная обработка материалов. 2019. № 55 (3). С. 58.
  10. Zlobina I.V. // Herald of Dagestan State Technical University. Technical Sciences. 2018. № 45(4). P. 42.
  11. Пятаев И.В. Применение СВЧ модификации для повышения эксплуатационных свойств термо- и реактопластов // Автореферат диссертации на соискание ученой степени кандидата технических наук. Саратов: Саратовский государственный технический университет имени Ю.А. Гагарина. 2015.
  12. Martin D., Ighigeanu D., Mateescu E., Craciun G., Ighigeanu A. // Radiation Physics and Chemistry. 2002. V. 65. P. 63.
  13. Sainia L., Guptab V., Patraa M.K., Jania R.K., Shuklaa A., Narendra Kumara N., Dixit A. // Journal of Alloys and Compounds. 2021. V. 869. 159360.
  14. Zhai Y., Zhang Y., Ren W. // Materials Chemistry and Physics. 2012. V. 133. № 1. P. 176.
  15. Elmahaishi M.F., Azis R.S., Ismail I., Muhammad F.D. // Journal of Materials Research and Technology. 2022. V. 20(5). P. 2188. http//doi/10.1016 / j.jmrt.2022.07.140
  16. Ермилов А.С., Нуруллаев Э., Шахиджанян К.З. // Журнал прикладной химии. 2017. Т. 90. № 11. С. 1535.
  17. Urbanovich O.V., Davydenko A.I., Panteleeva E.A, Sverdlov R.L., Shadyro O.I. // High Energy Chemistry. 2022. V. 56. № 3. P. 170.
  18. Tashmetov M.Yu., Ismatov N.B., Allayarov S.R. // High Energy Chemistry 2022. V. 56. № 3. P. 175.
  19. Kharchenko A.A., Fedotova Yu.A., Zur I.A., Brinkevich D.I., Brinkevich S.D., Grinyuk E.V., Prosolovich V.S., Mov-chan S.A., Remnev G.E., Linnik S.A., Lastovskii S.B. // High Energy Chemistry. 2022. V. 56. № 5. P. 354.
  20. Ermilov A.S., Nurullaev E.M. // Mechanics of composite Materials. 2015. V. 50. № 6. P. 757.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (87KB)

Declaração de direitos autorais © Э. Нуруллаев, В.Д. Онискив, Л.Л. Хименко, Э.М. Ибрагимова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies