Conformational Rearrangements of Adsorbed Polyampholytes under Periodic Changes in Polarity of a Charged Prolate Gold Nanospheroid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Conformational rearrangements of polyampholytic polypeptides adsorbed on the surface of a charged prolate gold nanospheroid with a periodic change in time of its polarity along the rotation axis have been studied using molecular dynamics simulation. The radial distributions of the density of polypeptide atoms in the equatorial region of the nanospheroid have been calculated, as well as the distributions of the linear density of polypeptide atoms along the major axis of the nanospheroid. At a low simulation temperature, a girdle polyampholytic fringe was formed in the central region of the nanospheroid and its ordering by layers, depending on the type of units, occurred with an increase in the charge of the nanospheroid with a simultaneous increase in the width of the macromolecular fringe along the rotation axis. The thickness of such a fringe along the cross section depends on the distance between the oppositely charged units in the
polyampholyte. At high temperatures and high absolute values of the total charge of the spheroidal nanoparticle, there were periodic displacements of the polyampholytic fringe toward the poles of the nanospheroid, being in antiphase for oppositely charged metallic nanospheroids. A mathematical model is presented for describing the conformational structure of a polyampholyte macromolecule on a prolate nanospheroid in an alternating electric field with the approximation of a prolate spheroid by a spherical cylinder

About the authors

N. Yu. Kruchinin

Center for Laser and Information Biophysics, Orenburg State University

Email: kruchinin_56@mail.ru
Orenburg, Russia

M. G. Kucherenko

Center for Laser and Information Biophysics, Orenburg State University

Email: kruchinin_56@mail.ru
Orenburg, Russia

P. P. Neyasov

Center for Laser and Information Biophysics, Orenburg State University

Author for correspondence.
Email: kruchinin_56@mail.ru
Orenburg, Russia

References

  1. Peltomaa R., Amaro-Torres F., Carrasco S. et al. // ACS Nano. 2018. V. 12. P. 11333.
  2. Natarajan P., Sukthankar P., Changstrom J. et al. // ACS Omega. 2018. V. 3. P. 11071.
  3. Perng W., Palui G., Wang W., Mattoussi H. // Bioconjugate Chem. 2019. V. 30. P. 2469
  4. Shahdeo D., Kesarwani V., Suhag D. et al. // Carbohydrate Polymers. 2021. V. 266. P. 118138.
  5. Uddayasankar U., Krull U.J. // Langmuir. 2015. V. 31. P. 8194.
  6. Green C.M., Spangler J., Susumu K. et al. // ACS Nano. 2022. V. 16. P. 20693.
  7. Chakraborty K., Biswas A., Mishra S. et al. // ACS Appl. Bio Mater. 2023. V. 6. P. 458.
  8. Jin Z., Dridi N., Palui G. et al. // J. Am. Chem. Soc. 2023. V. 145. P. 4570.
  9. Farhangi S., Karimi E., Khajeh K. et al. // Nanomedicine: Nanotechnology, Biology and Medicine. 2023. V. 47. P. 102609.
  10. Yousefi A., Ying C., Parmenter C.D.J. et al. // Nano Letters. 2023. V. 23. P. 3251.
  11. Nikolenko L.M., Pevtsov D.N., Brichkin S.B. // High Energy Chemistry. 2022. V. 56. P. 380.
  12. Shi M., Wang X., Wu Y. et al. // Sensors and Actuators B: Chemical. 2022. V. 355. P. 131315.
  13. Nevidimov A.V., Razumov V.F. // High Energy Chemistry. 2020. V. 54 P. 28.
  14. Li D., Zhang X., Chai Y., Yuan R. // Analytical Chemistry. 2023. V. 95. P. 1490.
  15. Sokolov P.A., Ramasanoff R.R., Gabrusenok P.V., Baryshev A.V., Kasyanenko N.A. // Langmuir. 2022. V. 38. P. 15776.
  16. Kruchinin N.Yu., Kucherenko M.G. // Colloid Journal. 2020. V. 82. № 2. P. 136.
  17. Kruchinin N.Yu., Kucherenko M.G. // Surfaces and Interfaces. 2021. V. 27. P. 101517.
  18. Kruchinin N. Yu. // Colloid Journal. 2021. V. 83. № 3. P. 326.
  19. Kruchinin N.Yu., Kucherenko M.G. // Colloid Journal. 2021. V. 83. № 5. P. 591.
  20. Kruchinin N.Yu., Kucherenko M.G. // High Energy Chemistry. 2021. V. 55. № 6. P. 442.
  21. Kruchinin N.Yu., Kucherenko M.G. // Russian Journal of Physical Chemistry A. 2022. V. 96. № 3. P. 622.
  22. Kucherenko M.G., Kruchinin N.Yu., Neyasov P.P. // Eurasian Physical Technical Journal. 2022. V. 19. № 2 (40). P. 19.
  23. Kruchinin N.Y., Kucherenko M.G. // Colloid Journal. 2022. V. 84. P. 169.
  24. Kruchinin N.Yu., Kucherenko M.G. // High Energy Chemistry. 2022. V. 56. № 6. P. 499.
  25. Kruchinin N.Yu., Kucherenko M.G. // Polymer Science Series A. 2022. V. 64. № 3. P. 240.
  26. Kruchinin N.Yu., Kucherenko M.G. // Colloid Journal. 2023. V. 85. P. 44.
  27. Phillips J.C., Braun R., Wang W. et al. // J. Comput. Chem. 2005. V. 26. P. 1781.
  28. MacKerell A.D.Jr., Bashford D., Bellott M. et al. // J. Phys. Chem. B. 1998. V. 102. P. 3586.
  29. Huang J., Rauscher S., Nawrocki G. et al. // Nature Methods. 2016. V. 14. P. 71.
  30. Heinz H., Vaia R.A., Farmer B.L., Naik R.R. // J. Phys. Chem. C. 2008. V. 112. P. 17281.
  31. Cappabianca R., De Angelis P., Cardellini A. et al. // ACS Omega. 2022. V. 7. P. 42292.
  32. Chew A.K., Pedersen J.A., Van Lehn R.C. // ACS Nano. 2022. V. 16. P. 6282.
  33. Dutta S., Corni S., Brancolini G. // Int. J. Mol. Sci. 2021. V. 22. P. 3624.
  34. Kariuki R., Penman R., Bryant S.J. et al. // ACS Nano. 2022. V. 16. P. 17179.
  35. Farhadian N., Kazemi M.S., Baigi F.M., Khalaj M. // Journal of Molecular Graphics and Modelling. 2022. V. 116. 2022. P. 108271.
  36. Jia H., Zhang Y., Zhang C. et al. // J. Phys. Chem. B. 2023. V. 127. P. 2258.
  37. Xiong Q., Lee O., Mirkin C.A., Schatz G. // J. Am. Chem. Soc. 2023. V. 145. P. 706.
  38. Hoff S.E., Di Silvio D., Ziolo R.F. et al. // ACS Nano. 2022. V. 16. P. 8766.
  39. Salassi S., Caselli L., Cardellini J. et al. // J. Chem. Theory Comput. 2021. V. 17. P. 6597.
  40. Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. P. 10089.
  41. Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79. P. 926.
  42. Shankla M., Aksimentiev A. // Nature Communications. 2014. V. 5. P. 5171.
  43. Chen P., Zhang Z., Gu N., Ji M. // Molecular Simulation. 2018. V. 44. P. 85.
  44. Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982.
  45. Гросберг А.Ю., Хохлов А.P. Статистическая физика макромолекул. М.: Наука, 1989.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (1MB)
4.

Download (892KB)
5.

Download (187KB)
6.

Download (2MB)
7.

Download (281KB)
8.

Download (1MB)

Copyright (c) 2023 Н.Ю. Кручинин, М.Г. Кучеренко, П.П. Неясов

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».