Thermal transformations of graphite and anthracite in the presence of lithium carbonate

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The method of differential scanning calorimetry was used to study mixtures of graphite and anthracite with lithium carbonate in an argon atmosphere and in air. It was found that in the temperature range of 100–500°C, a stronger mass loss occurs in argon than in air. This phenomenon is caused by the removal of oxygen compounds with carbon. Competing processes take place in the air – the formation of oxygen compounds with carbon, coal and desorption of oxygen-containing substances. A comparison of thermal effects on the curves of DSC and gravimetry for graphite–lithium carbonate systems in argon, in air is carried out. It was found that up to 700°C in the reaction products, the molar ratio of carbon oxides (IV; II) can be estimated at 10 : 1. Endothermic effects of lithium carbonate melting in an argon atmosphere for mixtures of graphite and anthracite with lithium carbonate were observed at 732°C and 727°C, respectively. In air, the peaks of endothermic effects do not correspond to the heat absorption curves in argon. The most probable explanations of the observed effects are given – the presence of phases of carbonate and lithium oxide; the manifestation of the stretched nature of the pre-transition region of lithium carbonate. By the method of powder X-ray diffractometry, it was found that the burnout of the carbon phase at 500°C in graphite, anthracite does not lead to a significant change in the interplane distances in lithium carbonate.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Lopanov

Shukhov BSTU

Хат алмасуға жауапты Автор.
Email: alopanov@yandex.ru
Ресей, Belgorod, 308012

E. Fanina

Shukhov BSTU

Email: evgenia-@mail.ru
Ресей, Belgorod, 308012

Әдебиет тізімі

  1. Косолапова Т.Я. Карбиды. М.: Металлургия. 1968. С. 65.
  2. Дикопенко Е.Я., Козловский Е.Л. Минерально-сырьевая база углей Восточного Донбасса. Ростов-на-Дону: Изд-во СКНЦ ВШ. 2003. 264 с.
  3. Kaufman L.A., McCloskey B.D. // Chem. Mater. 2021. V. 33. P. 4170.
  4. Renfrew S.E. & McCloskey B.D. // J. Amer. Chem. Soc. 2017. V. 139. P. 17853.
  5. Ottakam Thotiyl M.M., Freunberger S.A., Peng Z.Q., Bruce P.G. // J. Amer. Chem. Soc. 2013. V. 135. P. 494.
  6. Jian Qin, Yan Liu, Xifei Li, Linlin Fan, Shufeng Li, Hirbod Maleki Kheimeh Sari and Jian Qin A. // Frontiers in Chemistry. 2019. V. 7. P. 15.
  7. Zhiwei Zhao, Jun Huang, Zhangquan Peng. // Angew. Chem. Int. 2018. V. 57. P. 3874.
  8. Abegg R., Auerbach F., Koppel I. // “Handbuch der inorganic Chemie”. Verlag von S. Hirzel. 1908. V. 2. Pt. 1. P. 146.
  9. Big Chemical Encyclopedia. [Электронный ресурс]. URL: https://chempedia.info/info/lithium_carbide/. 2012. P. 77. (дата обращения: 27.06.2023).
  10. Плющев В.Е., Степин Б.Д. Химия и технология соединений лития, рубидия и цезия. М.: Химия. 1970. С. 45.
  11. Кубашевский О., Эванс Э. Термохимия в металлургии / Пер. с англ. К.А. Новосельцева; под ред. чл.-кор. АН СССР А.Ф. Капустинского. Москва: Изд-во иностр. лит., 1954. 422 с.
  12. Неорганические синтезы. Сборник 1. Пер. с англ. Е.А. Терентьевой; под ред. Д.И. Рябчикова. М.: Изд-во иностр. лит., 1951. 190 с.
  13. Остроушко Ю.И., Бучихин П.И., Алексеева В.В. Литий, его химия и технология. М.: ИГУИАЭ, 1960. 200 с.
  14. Александров А.П. // Физико-технические проблемы атомного проекта СССР. Собрание научных трудов в 5 томах. Изд-во: Наука, 2010. Т. 2. С. 285.
  15. Ruschewitz U., Pottgen R. // Zeitschrift für anorganische und allgemeine Chemie. 1999. V. 625. Issue 10. P. 1599.
  16. Deqing Cao, Chuan Tan & Yuhui Chen // Nature Communications. 2022. V. 13. P. 3.
  17. Лопанов А.Н., Фанина Е.А, Нестерова Н.В. // ХТТ. 2021. № 2. С. 42. https://doi.org/10.31857/S0023117721020055. [Solid Fuel Chemistry, 2021, vol. 55, no. 2, p. 105. https://doi.org/10.3103/S0361521921020051]
  18. Рабинович, В.А., Хавин, З.Я. Краткий химический справочник. Изд. 2-е, испр. и доп. Изд-во Химия. Ленингр. отд-е, 1978. 392 с.
  19. Алиев А.Р., Ахмедов И.Р., Какагасанов М.Г., Алиев З.А. // Неорганические материалы. 2021. Т. 57. № 7. С. 755.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. DSC curves of graphite and lithium carbonate (1:1 wt.) in an argon atmosphere (a) and in air (b).

Жүктеу (224KB)
3. Fig. 2. DSC curves of anthracite and lithium carbonate (1:1 wt.) in an argon atmosphere (a) and in air (b).

Жүктеу (238KB)
4. Fig. 3. Powder X-ray diffraction pattern of lithium carbonate.

Жүктеу (95KB)
5. Fig. 4. Powder X-ray diffraction pattern of a mixture of graphite and lithium carbonate (T = 500°C).

Жүктеу (69KB)
6. Fig. 5. Powder X-ray diffraction pattern of a mixture of anthracite and lithium carbonate (T = 500°C).

Жүктеу (96KB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>