Synthesis, Structure, Magnetic and Photoluminescent Properties of Lanthanide(III) Complexes with a Ligand Based on 1,10-Phenanthroline and (+)−3-Carene
- Authors: Bryleva Y.A.1,2, Glinskaya L.A.1, Agafontsev A.M.3,2, Rakhmanova M.I.1, Bogomyakov A.S.4,2, Sukhikh T.S.1,2, Gorbunova E.A.1,2, Tkachev A.V.3,2, Larionov S.V.1,2
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch
- Novosibirsk State University
- Vorozhtsov Institute of Organic Chemistry, Siberian Branch
- International Tomography Center, Siberian Branch
- Issue: Vol 60, No 8 (2019)
- Pages: 1314-1326
- Section: Article
- URL: https://journals.rcsi.science/0022-4766/article/view/162172
- DOI: https://doi.org/10.1134/S0022476619080110
- ID: 162172
Cite item
Abstract
Ionic complexes of the composition [LnL2(NO3)2]2[Ln(NO3)5]3Me2CO (Ln = Sm (1), Eu (2), Tb (3), Dy (4)) with an optically active ligand L containing 1,10-phenanthroline and (+)−3-carene moieties are synthesized. According to the X-ray crystallographic data, the crystal structure of compound 2 is composed of complex [EuL2(NO3)2]+ cations (N6O4 polyhedron) and complex [Eu(NO3)5]2− anions (O10 polyhedron), and also Me2CO molecules. The L and NO3 ligands perform both tridentate and bidentate chelating functions respectively. Complexes 1–4 are isostructural and crystallize in the non-centrosymmetric space group P1; their magnetic properties are studied in the temperature range 2–300 K. The μeff values for 1–4 at 300 K are 3.14 μB, 6.08 μB, 16.76 μB, and 18.30 μB respectively and are typical of Ln3+ ions. For complex 3 significant anisotropy results in a nonlinear field dependence of the magnetization at 2 K. Complexes 1–4 exhibit metal-centered orange (Sm3+), red (Eu3+), green (Tb3+), and yellow (Dy3+) luminescence in the solid state at room temperature. Luminescence quantum yield decreases for solid samples in the order 2 > 1 > 3 ≈ 4.
About the authors
Yu. A. Bryleva
Nikolaev Institute of Inorganic Chemistry, Siberian Branch; Novosibirsk State University
Author for correspondence.
Email: bryleva@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
L. A. Glinskaya
Nikolaev Institute of Inorganic Chemistry, Siberian Branch
Email: bryleva@niic.nsc.ru
Russian Federation, Novosibirsk
A. M. Agafontsev
Vorozhtsov Institute of Organic Chemistry, Siberian Branch; Novosibirsk State University
Email: bryleva@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
M. I. Rakhmanova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch
Email: bryleva@niic.nsc.ru
Russian Federation, Novosibirsk
A. S. Bogomyakov
International Tomography Center, Siberian Branch; Novosibirsk State University
Email: bryleva@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
T. S. Sukhikh
Nikolaev Institute of Inorganic Chemistry, Siberian Branch; Novosibirsk State University
Email: bryleva@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
E. A. Gorbunova
Nikolaev Institute of Inorganic Chemistry, Siberian Branch; Novosibirsk State University
Email: bryleva@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
A. V. Tkachev
Vorozhtsov Institute of Organic Chemistry, Siberian Branch; Novosibirsk State University
Email: bryleva@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
S. V. Larionov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch; Novosibirsk State University
Email: bryleva@niic.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk
Supplementary files
