Application of Cortexin for correcting the consequences of hypoxic-ischemic damage in the brain of infant rats


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To verify if the peptide preparation Cortexin can be used to correct pathological processes in the CNS during perinatal ontogenesis, a set of physiological parameters (EMG, ECG, respiration, vagosympathetic balance) were recorded and analyzed in a rat perinatal hypoxic-ischemic brain damage (PHIBD) model and control infant rats. In experimental 7-day-old animals, PHIBD was modeled under inhalation ether anesthesia by ligation of the left common carotid artery and subsequent exposure to a gas mixture of 8% oxygen and 92% nitrogen. 1 h after exposure, animals were first injected intraperitoneally with cortexin (1 mg/kg); the preparation was then injected at a daily basis for 10 days. Both control animals and those after surgery but non-treated were injected with physiological solution. After 10 and 30 days after surgery, animals exhibited a delayed body weight gain versus control and significant differences in EMG intensity and spectral structure. Cortexin treatment induced on day 10 a transient improvement in EMG spectral structure but not amplitude; by day 30, the positive effect of cortexin was no longer observed. The respiration rate both in treated and non-treated animals was higher than in control. No significant changes in the heart rate were revealed in animals with PHIBD, but non-treated animals exhibited on day 30 a tendency towards its decrease. The heart rate variability (HRV) analysis showed that 10 days after trauma both non-treated and cortexin-treated animals exhibited a statistically significant shift in the vagosympathetic balance towards a parasympathetic prevalence. On day 30, cortexin treatment yields positive effects, while in non-treated animals the vagosympathetic balance shifts towards a humoral-metabolic and sympathetic prevalence. Cortexin injection to intact rats leads to significant disturbances in the vagosympathetic balance, cardiac and, to a lesser extent, respiratory rhythms, and can cause stable disturbances in activity of the somatic and vegetative nervous systems.

About the authors

S. V. Kuznetsov

Sechenov Institute of Evolutionary Physiology and Biochemistry

Author for correspondence.
Email: ksv@iephb.ru
Russian Federation, St. Petersburg

N. N. Kuznetsova

Sechenov Institute of Evolutionary Physiology and Biochemistry; Institute of Experimental Medicine

Email: ksv@iephb.ru
Russian Federation, St. Petersburg; St. Petersburg


Copyright (c) 2016 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies