Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 59, No 7 (2018)

Article

Excitation of Convection in a System of Layers of a Binary Solution and an Inhomogeneous Porous Medium in a High-Frequency Vibration Field

Kolchanova E.A., Kolchanov N.V.

Abstract

The onset of convection in a system of horizontal layers of a binary solution and an inhomogeneous porous medium saturated with the solution is studied. The system is subjected to high-frequency transverse vibrations in the gravity field. It is assumed that the porosity of the medium depends linearly on the vertical coordinate. The permeability is estimated by the Karman–Kozeny formula for different values of the dimensionless gradient of the porosity, mz. The convection of the fluid under the action of high-frequency vibrations in the gravity field is described using the averaging method. The linear problem of the stability of the mechanical equilibrium of the fluid is solved numerically by the shooting method. The values of the critical parameters corresponding to the convection initiation threshold are determined for the system heated from below or from above. The heating from below is distinguished by a sharp change in the character of the instability with a variation in the porosity gradient or the vibration intensity. It is shown that, when the porosity increases with depth, at mz =–0.2, the instability is caused by the development of long-wave perturbations involving the fluid and the porous layers. When the porosity decreases with depth, at mz = 0.2, the most dangerous perturbations are short-wave perturbations localized in the fluid layer. For intermediate values of the porosity gradient,–0.2< mz < 0.2, the values of the minimum Rayleigh–Darcy critical numbers, which determine the equilibrium stability threshold with respect to short-wave and long-wave disturbances, approach one another. The neutral curves are bimodal. Upon heating from below, vertical vibrations effectively suppress convection in the fluid layer; therefore, with an increase in their intensity, the transition from short-wave vibrations, which are most dangerous, to long-wave perturbations is observed. A noticeable increase in the stability threshold is observed when the porosity decreases with depth. Upon heating from above, vibrations destabilize the equilibrium in the system and lead to a reduction in the wavelength of the critical perturbations. The wavelength decreases monotonically. Its maximum change is detected in layers whose porosity increases with depth.

Journal of Applied Mechanics and Technical Physics. 2018;59(7):1151-1166
pages 1151-1166 views

Stability of Thermovibrational Convection of a Pseudoplastic Fluid in a Plane Vertical Layer

Perminov A.V., Lyubimova T.P.

Abstract

Based on the thermovibrational convection equations, we have investigated the structure of the averaged plane-parallel convective flow in a plane vertical layer of Williamson fluid executing high-frequency linearly polarized vibrations along the layer. We show that as the vibrations are intensified, the nonlinear viscous properties of a pseudoplastic fluid cease to affect the structure and intensity of its main flow, and it becomes similar to a flow of ordinary Newtonian fluid. The linear problem of stability of an averaged plane-parallel flow of pseudoplastic Williamson fluid has been formulated and solved for the case of longitudinal high-frequency linearly polarized vibrations for small periodic perturbations along the layer. Numerical calculations have shown that, as in a Newtonian fluid, the monotonic hydrodynamic perturbations are most dangerous at low Prandtl numbers. As the Prandtl number increases, the thermal instability modes begin to exert an undesirable effect. An enhancement of pseudoplastic fluid properties leads to destabilization of the main flow for both types of perturbations. Similarly to a Newtonian fluid, an additional vibrational instability mode to which small Grashof numbers correspond appears in the presence of vibrations. The influence of this vibrational mode on the stability of the main flow is determined by the vibration frequency and the temperature gradient. An intensification of the vibrations destabilizes the flow for all of the investigated instability modes. For a given set of rheological parameters of the Williamson model, there are critical values of the modified and vibrational Grashof numbers at which the averaged flow completely loses its stability with respect to the types of perturbations under consideration. Absolute destabilization of the main flow in a pseudoplastic fluid occurs at higher values of the vibrational Grashof number than those in a Newtonian fluid.

Journal of Applied Mechanics and Technical Physics. 2018;59(7):1167-1178
pages 1167-1178 views

Numerical Simulation and Experimental Study of Plastic Strain Localization under the Dynamic Loading of Specimens in Conditions Close to a Pure Shear

Bilalov D.A., Sokovikov M.A., Chudinov V.V., Oborin V.A., Bayandin Y.V., Terekhina A.I., Naimark O.B.

Abstract

Mechanisms of plastic strain localization under the dynamic loading of specially shaped specimens made of the AMg6 aluminum alloy and intended for tests under conditions close to a pure shear on a split Hopkinson–Kolsky pressure bar are studied theoretically and experimentally. The mechanisms of plastic flow instability are related to collective effects in the ensemble of microdefects in spatially localized regions visualized in situ using a CEDIP Silver 450M high-speed infrared camera. The calculation corresponding to the experimental loading scheme is implemented using wide range constitutive equations reflecting the dependence of structural relaxation mechanisms—manifestation of the collective behavior of microdefects—on the evolution of the localized flow shear instability. Microstructure analysis of deformed specimens included the study of the spatial relief (porosity) scaling by the data of a NewView-5010 microscope-interferometer in regions of plastic strain localization. An increase in the structural scaling exponent (Hurst exponent) reflected the degree of the multiscale correlated behavior of defects and the porosity induced by them in regions of localized plasticity. Infrared scanning of the strain localization region and numerical simulation followed by an estimate of the defect structure corroborated the hypothesis that effects of thermal softening do not play a decisive role in the process of plastic shear localization in the tested material under the considered loading regimes. A new, one of the possible ones, mechanism of plastic strain localization under dynamic loading is justified. It is caused by the multiscale collective behavior of mesodefects—structure-scaling transitions—and establishes the stadiality of the localized shear evolution.

Journal of Applied Mechanics and Technical Physics. 2018;59(7):1179-1188
pages 1179-1188 views

Evaluation of the Temperature Regime of the Rods of the Inductor of an MHD Stirrer for Possible Use in an Industrial Aluminum Furnace

Lekomtsev S.V., Khripchenko S.Y.

Abstract

In the production of aluminum alloys, the melt must be stirred in the bath of a furnace. For this purpose, it is convenient to use MHD stirrers. However, MHD stirrers that are used in production in practice are mainly linear traveling-field inductors, which cannot be sufficiently effective because of their design features. Their size is much smaller than the linear dimensions of the bath, and the poles of their magnetic circuits are outside the bath walls and the insulation layer; therefore, the traveling magnetic field that influences the molten metal is significantly reduced. For this reason, the electrical power consumed by these MHD stirrers is high (hundreds of kilovolt–amperes). A device in the form of a system of rods (buses) connected in parallel to a three-phase power network and placed in close proximity to the molten metal immediately under the bottom of the bath may be an alternative to these stirrers. The main problem associated with this device is the cooling of rods via the removal of the Joule heat that is released during the passage of an electric current in the rods and the heat received from the molten metal in the bath in the furnace. The simplest way to withdraw the released heat is the convective movement of air in the tubular rods (it is not necessary to use special additional equipment). When conducting multivariant engineering calculations in designing such devices, it is necessary to determine the values of a cooling convective air flow in the hollow rods of the inductor of an MHD stirrer. In the present paper, we propose a numerical calculation of the temperature field in the aluminum furnace and a simple model for the convective air flow that passes through the rods of the inductor of an MHD stirrer. Based on this model and using the results of the physical experiments performed in this study, a simple semiempirical engineering formula for the approximate computation of the convective air-motion velocity in the hollow rods of an MHD stirrer is derived.

Journal of Applied Mechanics and Technical Physics. 2018;59(7):1189-1196
pages 1189-1196 views

Calculation of the Unsteady Thermal Stresses in Elastoplastic Solids

Burenin A.A., Tkacheva A.V., Shcherbatyuk G.A.

Abstract

The one-dimensional boundary problem of the theory of thermal stresses that simulates the shrink fit assembly of cylindrical parts is used to discuss a computational approach to predicting the evolution of the thermal stresses under piecewise-linear plasticity conditions. The solution of the problem is based on the classical maximum shear stress criterion (Tresca–Saint Venant yield criterion), and the maximum reduced shear stress criterion (Ishlinsky–Ivlev yield criterion) is only used to compare the calculation results. The application of piecewise-linear potentials in the theory of plastic flow is shown to allow equilibrium equations to be integrated in both the region of reversible deformation and various parts of a plastic flow region. The dependences thus obtained are important for a time-step calculation algorithm. This algorithm can trace the site and time of both nucleation and completion of plastic flows at each time step. The calculations demonstrate that, following temperature, the stresses in the assembly element materials can pass from correspondence to a certain face of a loading surface to correspondence to its edge and, then, to another face. This circumstance implies the division of the irreversible deformation region into parts, where a plastic flow obeys different sets of equations, which take into account the assignment of the state of stress to various faces and edges of the loading surface. The computational algorithm also makes it possible to trace the beginning of division of a flow region into parts and the motion of the part boundaries through irreversibly deformed materials, including the times of their coincidence (i.e., the disappearance of the parts of the calculation region). A repeated plastic flow is shown to appear. This flow nucleates when an assembly is cooled, i.e., when the assembly element materials return to reversible deformation conditions due to the evolution of the state of stress. Taking into account the change in plastic flow conditions that is caused by the use of piecewise-linear plastic potentials is found to substantially affect the level and the distribution of residual stresses and the final tightness of the assembly.

Journal of Applied Mechanics and Technical Physics. 2018;59(7):1197-1210
pages 1197-1210 views

Numerical Solution of the Problem of Incompressible Fluid Flow in a Plane Channel with a Backward-Facing Step at High Reynolds Numbers

Fomin A.A., Fomina L.N.

Abstract

Numerical solutions of the problem of steady incompressible viscous fluid flow in a plane channel with a backward-facing step have been obtained by the grid method. The fluid motion is described by the Navier–Stokes equations in velocity-pressure variables. The main computations were performed on a uniform 6001 × 301 grid. The control-volume method of the second order in space was used for the difference approximation of the original equations. The results were validated for the range of Reynolds numbers (100 ≤ Re ≤ 3000) by comparing them with the experimental and theoretical data found in the literature. The stability of the computational algorithm at high Reynolds numbers was achieved by using a fine difference grid (a small grid step). The study has been carried out for a short channel at Reynolds numbers from 1000 to 10 000 with a step of 1000. A nonstandard structure of the primary vortex behind the step—the presence of numerous centers of rotation both inside the vortex and in the near-wall region under it—has been revealed. The number of centers of rotation in the primary recirculation zone is shown to grow with increasing Reynolds number. The profiles of the coefficients of friction and hydrodynamic resistance to the flow as a function of Reynolds number have also been analyzed. The results obtained can be useful for comparison and validation of the solutions of problems of such a type.

Journal of Applied Mechanics and Technical Physics. 2018;59(7):1211-1226
pages 1211-1226 views

Stress Analysis for Perforated Cylinders with Combined Use of the Boundary Element Method and Nonlocal Fracture Criteria

Legan M.A., Blinov V.A.

Abstract

When using local fracture criteria, it is usually assumed that a fracture begins when the maximum equivalent stress reaches the limit value at least at one point of the body. However, under conditions of an inhomogeneous stress state, it is suitable to use nonlocal failure criteria which take into account the nonuniformity of the stress distribution and yield limit load estimates that are closer to the experimental data. An algorithm of the joint use of the boundary element method (in the version of the fictitious stress method) and gradient fracture criterion for calculations of the strength of plane construction elements is composed. The computations are carried out using a program written in FORTRAN. Results on the limit loading obtained numerically and analytically based on the local criterion of maximum stress and nonlocal fracture criteria (gradient criterion and Nuismer criterion) are compared both among themselves and with the experimental data on the failure of ebonite specimens. A brittle fracture of ebonite cylinders with a hole under diametric compression is studied experimentally. It is shown that nonlocal criteria lead to limit loading values which are closer to the experimental ones than the local criterion. The estimates obtained by the local maximum stress criterion are significantly less than the experimental ones. The estimates found for limit loads by the Nuismer criterion are greater than similar ones determined by the local criterion; nevertheless, they are less than the experimental ones, while the limit load values according to the gradient criterion are closest to the experimental values. Using the nonlocal fracture criteria in designing constructions with stress concentrators will allow us to increase the design values of the limit loads.

Journal of Applied Mechanics and Technical Physics. 2018;59(7):1227-1234
pages 1227-1234 views

Advective Removal of Localized Convective Structures in a Porous Medium

Zagvozkin T.N.

Abstract

Thermal convection in a planar horizontal layer of a porous medium, which is saturated with a viscous incompressible liquid pumped along the layer and has solid impermeable boundaries with a set heat flux at them, is considered. In certain physical systems, the first instability in Rayleigh–Bénard convection between thermally insulated horizontal plates is long-wave. The equations characterizing large-scale thermal convection in a horizontal layer in a homogeneous liquid and in a porous medium are similar: they differ in just one term, which vanishes under certain conditions (e.g., for two-dimensional flows or an infinite Prandtl number). In the system in question with a vertical heat flux that is nonuniform along the layer, localized convective structures may emerge in the region where the heat flux exceeds the critical value corresponding to uniform heating from below and to the onset of convection within the layer. When the rate of the longitudinal pumping of a liquid through the layer changes, the system may enter either a state with stable localized convective structures and a monotonic (or oscillatory) instability or a state in which the localized convective flow is removed completely from the region of its excitation. Calculations are carried out based on the amplitude equations in the long-wave approximation using the Darcy–Boussinesq model and the approximation of small deviations of the heat flux across the boundaries from the critical values under uniform heating. The results of the numerical modeling of the process of the removal of a localized flow from the region of its excitation at higher rates of the longitudinal pumping of the liquid through the layer are detailed. Stability maps for monotonic and oscillatory instabilities of the base state of the system are presented.

Journal of Applied Mechanics and Technical Physics. 2018;59(7):1235-1241
pages 1235-1241 views

Free Vibrations of a Cylindrical Shell Partially Resting on Elastic Foundation

Bochkarev S.A.

Abstract

The free vibrations of a circular cylindrical shell resting on a two-parameter Pasternak elastic foundation are investigated. The elastic medium is inhomogeneous along the shell length, and the inhomogeneity represents an alternation of areas with and without the medium. The behavior of the shell is considered in the framework of the classical shell theory based on the Kirchhoff–Love hypotheses. The corresponding geometric and physical relations, together with the equations of motion, are reduced to a system of eight ordinary differential equations for new unknowns. The problem is solved by applying the Godunov orthogonal sweep method, and the differential equations are integrated using the fourth-order Runge–Kutta method. The natural frequencies are calculated by applying a stepwise iterative procedure, followed by a further refinement based on the bisection method. The results are validated by comparing them with available numerical-analytical solutions. For simply supported, clamped-clamped, and clamped-free cylindrical shells, the numerical results reveal that the lowest vibration frequencies depend on the elastic medium characteristics and the type of the inhomogeneity. It is shown that a violation in the smoothness of the curves is caused by variations in the lowest frequency mode, the ratio of the size of the elastic foundation to the total length of the shell, and its stiffness, as well as by a combination of the boundary conditions specified at the ends of the shell.

Journal of Applied Mechanics and Technical Physics. 2018;59(7):1242-1250
pages 1242-1250 views

Simulation of Primary Film Atomization Due to Kelvin–Helmholtz Instability

Kazimardanov M.G., Mingalev S.V., Lubimova T.P., Gomzikov L.Y.

Abstract

Liquid film atomization under a high-speed air flow (water was considered as the liquid) due to the Kelvin–Helmholtz instability is studied using the volume of fluid (VOF) method. We develop an approach for modeling the primary breakup and use it to investigate the grid convergence, choose the optimal size of the grid cell, and calculate the primary breakup of the film in the channel. The dependences of the mean break-off angle, the velocity modulus, and the Sauter droplet diameter on the longitudinal coordinate of the channel are obtained. The step-by-step averaging over the ensemble of droplets and over time allows us to get smooth coordinate dependences of the characteristics of the ensemble of the droplet. The value of the most useful parameter for engineering applications, the mean Sauter diameter D32 (equal to the ratio of the mean droplet volume to its mean area) is close to that obtained using a semiempirical formula from the literature, based on the experiment where hot wax is atomized by a high-speed airflow. The dependence of the Sauter mean diameter on the thickness of the liquid layer agrees qualitatively with the experimental dependence. The study of the grid’s convergence showed that the number of the smallest droplets increases rapidly with decreasing cell size. Their contribution to the average characteristics of the droplet’s ensemble, however, remains insignificant; nonetheless, their input to the mean characteristics remains insignificant; thus, there is no reason to decrease the grid cell size to account for small droplets.

Journal of Applied Mechanics and Technical Physics. 2018;59(7):1251-1260
pages 1251-1260 views

Numerical Study of Vibrational Processes in Composite Material for the Development of a Delamination Control System

Serovaev G.S., Shestakov A.P., Oshmarin D.A.

Abstract

Composite materials, due to their properties (high specific strength and low weight), are currently among the most demanded materials used in creating objects for many purposes. The strict modern safety standards require timely monitoring of the occurrence and development of defects, in particular, delaminations. In this respect, considerable attention is paid to the development and improvement of methods of flaw detection. This paper presents a numerical study of the possibility of detecting and localizing delaminations in structures made of laminated composite materials by using vibrational approaches. The approach proposed is based on the excitation of vibrations with an increased amplitude in the region of the defect. This is possible due to the rise of natural vibration frequencies, the maximum amplitude of which is localized exactly in this place. In the first stage of numerical experiments, it was found that such natural frequencies depend weakly on the location of the defect but are strongly correlated with the size of the delamination. In the next stage, for an adequate description of the vibrational processes in the structure, forced steady-state vibrations were simulated taking into account the necessary dissipative parameters of the composite material. The frequency of the external action was chosen in accordance with the natural vibration frequency corresponding to the defect obtained from the modal analysis. The calculation results showed a significant increase in the vibration amplitude in the delamination region in comparison with the defectless structure if the frequency of the external action is chosen correctly. The effectiveness of the approach depending on the distance from the place of the application of the forced oscillation to the delamination region was tested. The method of defect monitoring proposed in the paper makes it possible to justify the possibility of developing, based on the vibtrational processes, a system for detecting delaminations in composite materials and to determine the main parameters of such a system.

Journal of Applied Mechanics and Technical Physics. 2018;59(7):1261-1270
pages 1261-1270 views

Modeling a Stressed State in the Vicinity of an Optical Fiber Embedded in a Polymer Composite Material with Allowance for the Structural Features of the Composite

Kosheleva N.A., Serovaev G.S.

Abstract

This work is concerned with two important scientific areas: mechanics of polymer composite materials (PCMs) and the development of new methods for diagnostics and monitoring of the mechanical state of a structure based on fiber-optic sensors. The nomenclature and the range of application of PCMs are expanding very rapidly. Currently, the percentage of the use of composite materials is one of the indicators of the competitiveness of the corresponding products. At the same time, theoretical results concerning the assessment of the workability of PCM structures do not always keep up with the requests of designers developing new products. Therefore, model assessments should be complemented with modern monitoring systems. Fiber-optic sensors offer opportunities for creating new monitoring scenarios. One of them is associated with the use of sensors embedded in a PCM. This gives a new kind of smart material, in which the PCM, along with its basic functions, provides information on its parameters: temperature, strain, etc. The development of this class of smart materials requires solving a number of problems. One of them, which is the subject of the present work, is the evaluation by methods of mathematical modeling of changes in the stiffness and strength characteristics of PCM products due to the integration of fiber-optical sensors into the material. In contrast to the known works, the developed computational models take into account the layered structure of a PCM, the types of layer stacking, the arrangement of layers and optical fiber, the presence of a technological defect in the form of a resin pocket with the elimination of points of stress singularity that are present in the known computational schemes. The model proposed in this work can be used to estimate the stress concentration in the layers of the composite material adjacent to the optical fiber.

Journal of Applied Mechanics and Technical Physics. 2018;59(7):1271-1278
pages 1271-1278 views

Direct Numerical Simulation of Homogeneous Isotropic Helical Turbulence with the TARANG Code

Teimurazov A.S., Stepanov R.A., Verma M.K., Barman S., Kumar A., Sadhukhan S.

Abstract

The problem of taking into account the influence of turbulence comes up while solving both fundamental questions of geo- and astrophysics and applied problems arising in the development of new engineering solutions. Difficulties in applying the standard propositions of the theory appear when considering flows with a special spatial structure, for example, helical flows. The flow helicity determines the topology of vortices and is conserved in the process of energy transfer in a turbulent flow. In this paper we suggest an approach for numerical simulation of homogeneous isotropic helical turbulence aimed at detecting characteristic signatures of the inertial range and finding the distributions of the spectral energy and helicity densities. In this approach we use the TARANG code designed to numerically solve various problems of fluid dynamics in the regime of a developed turbulent flow and to study hydrodynamic instability phenomena of a different physical nature (thermal convection, advection of passive and active scalars, magnetohydrodynamics, and the influence of Coriolis forces). TARANG is an open source code written in the object-oriented C++ language with a high efficiency of computation on multiprocessor computers. Particular attention in the paper is given to the application of the tool kit from the package to analyze the solutions obtained. The spectral distributions and fluxes of energy and helicity have been computed for Reynolds numbers of 5700 and 14 000 on 5123 and 10243 grids, respectively. We have checked whether the –5/3 spectral law is realizable and estimated the universal Kolmogorov and Batchelor constants in the inertial range. An analysis of the energy and helicity transfer functions between the selected scales (shell-to-shell transfer) shows a significant contribution of nonlocal interactions to the cascade process.

Journal of Applied Mechanics and Technical Physics. 2018;59(7):1279-1287
pages 1279-1287 views

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies