


Том 105, № 2 (2017)
- Год: 2017
- Статей: 14
- URL: https://journals.rcsi.science/0021-3640/issue/view/9718
Astrophysics and Cosmology
Dark matter from dark energy in q-theory
Аннотация
A constant (spacetime-independent) q-field may play a crucial role for the cancellation of Planck-scale contributions to the gravitating vacuum energy density. We now show that a small spacetime-dependent perturbation of the equilibrium q-field behaves gravitationally as a pressureless perfect fluid. This makes the fluctuating part of the q-field a candidate for the inferred dark-matter component of the present universe. For a Planck-scale oscillation frequency of the q-field perturbation, the implication would be that direct searches for dark-matter particles would remain unsuccessful in the foreseeable future.



Nonlinear Phenomena
Fermi–Pasta–Ulam recurrence and modulation instability
Аннотация
We give a qualitative conceptual explanation of the Fermi–Pasta–Ulam (FPU) like recurrence in the onedimensional focusing nonlinear Schrodinger equation (NLSE). The recurrence can be considered as a result of the nonlinear development of the modulation instability. All known exact localized solitary wave solutions describing propagation on the background of the modulationally unstable condensate show the recurrence to the condensate state after its interaction with solitons. The condensate state locally recovers its original form with the same amplitude but a different phase after soliton leave its initial region. Based on the integrability of the NLSE, we demonstrate that the FPU recurrence takes place not only for condensate, but also for a more general solution in the form of the cnoidal wave. This solution is periodic in space and can be represented as a solitonic lattice. That lattice reduces to isolated soliton solution in the limit of large distance between solitons. The lattice transforms into the condensate in the opposite limit of dense soliton packing. The cnoidal wave is also modulationally unstable due to soliton overlapping. The recurrence happens at the nonlinear stage of the modulation instability. Due to generic nature of the underlying mathematical model, the proposed concept can be applied across disciplines and nonlinear systems, ranging from optical communications to hydrodynamics.



Condensed Matter
Modulation of band gap by normal strain and an applied electric field in SiC-based heterostructures
Аннотация
The structure and electronic properties of the WS2/SiC van der Waals (vdW) heterostructures under the influence of normal strain and an external electric field have been investigated by the ab initio method. Our results reveal that the compressive strain has much influence on the band gap of the vdW heterostructures and the band gap monotonically increases from 1.330 to 1.629 eV. The results also imply that electrons are likely to transfer from WS2 to SiC monolayer due to the deeper potential of SiC monolayer. Interestingly, by applying a vertical external electric field, the results present a parabola-like relationship between the band gap and the strength. As the E-field changes from to −0.50 +0.20 V/Å, the band gap first increases from zero to a maximum of about 1.90 eV and then decreases to zero. The significant variations of band gap are owing to different states of W, S, Si, and C atoms in conduction band and valence band. The predicted electric field tunable band gap of the WS2/SiC vdW heterostructures is very promising for its potential use in nanodevices.



Diagnostics of many-particle electronic states: Non-stationary currents and residual charge dynamics
Аннотация
We propose the method for identifying many particle electronic states in the system of coupled quantum dots (impurities) with Coulomb correlations. We demonstrate that different electronic states can be distinguished by the complex analysis of localized charge dynamics and non-stationary characteristics. We show that localized charge time evolution strongly depends on the properties of initial state and analyze different time scales in charge kinetics for initially prepared singlet and triplet states. We reveal the conditions for existence of charge trapping effects governed by the selection rules for electron transitions between the states with different occupation numbers.



Scattering spectroscopy of a superconducting artificial atom coupled to two half spaces
Аннотация
We propose a novel approach for spectroscopic characterization of quantum systems. A superconducting quantum system—an artificial atom—is coupled asymmetrically to two open-end transmission lines (1D half-spaces). The lines themselves are strongly decoupled from each other. This results in suppression of the direct microwave propagation from one side to another. The atom, excited from the weaker coupled side relaxes with photon emission preferably to the stronger coupled side. By measuring the emission spectrum, we reconstruct the energy levels of the artificial atom. Our method allows to reject the excitation tone and to detect only the elastically scattered emission corresponding to intra-atomic transitions. We also demonstrate visualization of the higher-level transitions by populating the excited levels. Such a system does not have an optical analog with natural atoms or quantum dots coupled to two half spaces.



Bipolar and unipolar electrofluorescence in a molecular diode
Аннотация
It is shown that unipolar electrofluorescence different from that caused by an nonidentical shift of levels of molecular orbitals involved in electron transport can be observed in a molecular diode, where the coupling of the chloroform group of a molecule with one of the electrodes is much stronger than its coupling with the other electrode. The critical potential differences are found and conditions under which bipolarity and unipolarity are observed are determined. The performed estimates of the radiation power indicate that electrofluorescence is much more efficient in 1M2 systems exhibiting unipolarity irrespective of the Stark shift of levels. In such systems, the phenomenon of electrochromism should be expected and the probability of manifestation of electrophosphorescence in them is large.



Visualization of the magnetic flux structure in phosphorus-doped EuFe2As2 single crystals
Аннотация
Magnetic flux structure on the surface of EuFe2(As1-xPx)2 single crystals with nearly optimal phosphorus doping levels x = 0.20 and x = 0.21 is studied by low-temperature magnetic force microscopy and decoration with ferromagnetic nanoparticles. The studies are performed in a broad temperature range. It is shown that the single crystal with x = 0.21 in the temperature range between the critical temperatures TSC= 22 K and TC = (18 ± 0.3) K of the superconducting and ferromagnetic phase transitions, respectively, has the vortex structure of a frozen magnetic flux, typical for type-II superconductors. The magnetic domain structure is observed in the superconducting state below TC. The nature of this structure is discussed.



AlInAs quantum dots
Аннотация
A system of quantum dots on the basis of AlxIn1-xAs/AlyGa1-y As solid solutions has been studied. The usage of broadband AlxIn1-x solid solutions as the basis of quantum dots makes it possible to expand considerably the spectral emission range into the short-wave region, including the wavelength region near 770 nm being of interest for the design of aerospace systems of quantum cryptography. The optical characteristics of single AlxIn1-xAs quantum dots grown according to the Stranski–Krastanov mechanism are studied by the cryogenic microphotoluminescence method. The fine structure of exciton states of quantum dots is studied in the wavelength region near 770 nm. It is shown that the splitting of exciton states is comparable with the natural width of exciton lines, which is of great interest for the design of emitters of pairs of entangled photons on the basis of AlxAs1-x quantum dots.



Fields, Particles, and Nuclei
NSVZ-like scheme for the photino mass in softly broken N = 1 SQED regularized by higher derivatives
Аннотация
In the case of using the higher derivative regularization, we construct the subtraction scheme that gives the NSVZ-like relation for the anomalous dimension of the photino mass in softly broken N = 1 SQED with Nf flavors in all loops. The corresponding renormalization prescription is determined by simple boundary conditions imposed on the renormalization constants. It allows fixing an arbitrariness of choosing finite counterterms in every order of the perturbation theory in such a way that the renormalization group functions defined in terms of the renormalized coupling constant satisfy the NSVZ-like relation.



Quantum Informatics
Role of qubit-cavity entanglement for switching dynamics of quantum interfaces in superconductor metamaterials
Аннотация
We study quantum effects of strong driving field applied to dissipative hybrid qubit-cavity system which are relevant for a realization of quantum gates in superconducting quantum metamaterials. We demonstrate that effects of strong and non-stationary drivings have significantly quantum nature and cannot be treated by means of mean-field approximation. This is shown from a comparison of steady state solution of the standard Maxwell–Bloch equations and numerical solution of Lindblad equation on a density matrix. We show that mean-field approach provides very good agreement with the density matrix solution at not very strong drivings f < f* but at f > f* a growing value of quantum correlations between fluctuations in qubit and photon sectors changes a behavior of the system. We show that in regime of non-adiabatic switching on of the driving such a quantum correlations influence a dynamics of qubit and photons even at weak f.



Plasma, Hydro- and Gas Dynamics
On a new mechanism of excitation of the absolute parametric decay instability of an electromagnetic wave in experiments on electron cyclotron resonance heating in toroidal devices
Аннотация
Experimental conditions under which the low-threshold absolute parametric decay instability of an electromagnetic wave with extraordinary polarization at the electron cyclotron resonance heating of a plasma at the second harmonic resonance in toroidal devices are analyzed. A new mechanism is proposed for the localization of a daughter electrostatic wave in the toroidal direction in the region of a high-power pump beam. This mechanism, along with the two-dimensional localization of the daughter wave because of a nonmonotonic radial profile of the plasma density and the poloidal inhomogeneity of the magnetic field, can be responsible for the parametric excitation of a three-dimensional cavity for this wave and, as a result, low-threshold absolute decay instability of the pump wave.



Isotropization of two-dimensional hydrodynamic turbulence in the direct cascade
Аннотация
We present results of numerical simulation of the direct cascade in two-dimensional hydrodynamic turbulence (with spatial resolution up to ). If at the earlier stage (at the time of order of the inverse pumping growth rate τ-Γmax−1), the turbulence develops according to the same scenario as in the case of a freely decaying turbulence [1, 2]: quasi-singular distribution of di-vorticity are formed, which in k-space correspond to jets, leading to a strong turbulence anisotropy, then for times of the order of 10τ turbulence becomes almost isotropic. In particular, at these times any significant anisotropy in the angular fluctuations for the energy spectrum (for a fixed k) is not visible, while the probability distribution function of vorticity for large arguments has the exponential tail with the exponent linearly dependent on vorticity, in the agreement with the theoretical prediction [3].



Scientific Summaries
Electron–electron scattering and the transport properties of two-dimensional ballistic contacts
Аннотация
Recent results on the effect of electron–electron collisions on the electric properties of contacts to a twodimensional electron gas with a direct conductivity in the absence of scattering by impurities and boundaries have been reviewed. A correction to the conductance of such contacts owing to the electron–electron scattering can be either positive or negative depending on the contact geometry. The magnitude of this correction strongly depends on the magnetic field.



Erratum
Erratum to: “On the possibility of the dynamic self-polarization of nuclear spins in a quantum dot”


