


Том 104, № 10 (2016)
- Год: 2016
- Статей: 14
- URL: https://journals.rcsi.science/0021-3640/issue/view/9706
Plasma, Hydro- and Gas Dynamics
Development of high vorticity in incompressible 3D Euler equations: Influence of initial conditions
Аннотация
The incompressible three-dimensional ideal flows develop very thin pancake-like regions of increasing vorticity. These regions evolve with the scaling ωmax(t) ∝ l(t)-2/3 between the vorticity maximum and pancake thickness, and provide the leading contribution to the energy spectrum, where the gradual formation of the Kolmogorov interval Ek ∝ k−5/3 is observed for some initial flows. With the massive numerical simulations, we study the influence of initial conditions on the processes of pancake formation and the Kolmogorov energy spectrum development.



On the quasioptical approximation in dissipative media with spatial dispersion
Аннотация
A new form of the quasioptical equation is proposed to describe the propagation of an electromagnetic wave beam in a stationary smoothly inhomogeneous medium with spatial dispersion and dissipation. The proposed approach guarantees the positive definiteness of the absorbed power in the locally dissipative medium, which is a nontrivial property for inhomogeneous media with spatial dispersion. An efficient numerical scheme is constructed to solve the derived quasioptical equation.



Thermoelectric properties of a plasma at megabar pressures
Аннотация
A nonideal hydrogen plasma is theoretically studied for the first time as the working medium of a thermoelectric generator. A method is proposed for the calculation of the electrical conductivity, Seebeck coefficient, and thermal conductivity of the nonideal plasma in a wide range of densities and temperatures, including the region of strong degeneracy of electrons, which is achieved in experiments on the quasi-isentropic compression of deuterium and where a “plasma phase transition” (transition with a sharp change in the component composition) is possibly implemented. In this method, the kinetic coefficients are calculated together with the equation of states of the nonideal plasma. It is shown for the first time that the Seebeck coefficient in such a medium reaches 5500 μV/(K cm), which is an order of magnitude larger than that in currently available semiconductor materials used in thermoelectric generators. It is found that the figure of merit in hydrogen, which has a high thermal conductivity, at megabar pressures reaches 0.4, which is only slightly below that in currently available semiconductor materials.



Generation of vortices by gravity waves on a water surface
Аннотация
The generation of a vortex motion on a water surface by gravity waves at frequencies of 3 and 4 Hz and wavelengths of 17 and 9.7 cm, respectively, has been studied experimentally. It has been shown that the results can be described by a model of the formation of a vorticity by nonlinear waves. It has been shown for the first time that the vorticity amplitude on a water surface depends on the phase difference between the waves propagating at an angle of 90° with respect to each other and with a period of 360°. A quadratic dependence of the surface vorticity amplitude on the angular amplitude of the waves has been observed. Transfer of the energy of the vortex motion from the pumping region to a larger scale has been discovered.



Optics and Laser Physics
Optical bistability in a defect slab with a negative refractive quantum dot nanostructure
Аннотация
We demonstrate optical bistability (OB) in a defect slab doped V-type four-level InGaN/GaN quantum dot nanostructure in the negative refraction frequency band. It has been shown that the OB behavior of such a quantum dot nanostructure system can be controlled by the amplitude of the driving fields and a new parameter for controlling the OB behavior as thickness of the slab medium in the negative refraction band. Meanwhile, we show that the negative refraction frequency band can be controlled by tuning electric permittivity and magnetic permeability by the amplitude of the driving fields and electron concentration in the defect slab doped. Under the numerical simulations, due to the effect of quantum coherence and interference, it is possible to switch bistability by adjusting the optimal conditions in the negative refraction frequency band, which is more practical in all-optical switching or coding elements, and technology based nanoscale devices.



Self-diffraction at a dynamic photonic crystal formed in a colloidal solution of quantum dots
Аннотация
Self-diffraction at a one-dimensional dynamic photonic crystal formed in the colloidal solution of CdSe/ZnS quantum dots has been discovered. This self-diffraction appears simultaneously with self-diffraction at induced transparency channels at the resonant excitation of the main electron–hole (excitonic) transition of quantum dots by two laser beams with a Gaussian intensity distribution over the cross section. It is shown that a nonlinear change in the absorption of colloidal quantum dots results in the formation of a transparency channel and an induced amplitude diffraction grating, and a significant nonlinear change in the refractive index (Δn ≈ 10−3) in the absorbing medium is responsible for the formation of the dynamic photonic crystal. Self-diffracted laser beams are revealed propagating not only in directions corresponding to self-diffraction at the induced diffraction grating but also in directions satisfying the Laue condition.



High-Q surface modes in photonic crystal/iron garnet film heterostructures for sensor applications
Аннотация
A novel type of a plasmonic sensor based on a magnetophotonic plasmonic heterostructure with an ultrahigh-Q resonance is considered. A magnetoplasmonic resonance with an angular width of 0.06°, which corresponds to a Q factor of 700 and is a record value for magnetoplasmonic sensors, is experimentally demonstrated. It is shown that, owing to the excitation of long-propagation-range plasmons, the transverse magneto-optical Kerr effect is considerably enhanced and, thus, the sensitivity of the magnetoplasmonic sensor to variations in the refractive index increases to 18 RIU–1, where RIU is the refractive index unit. Numerical calculations indicate that the parameters of the magnetoplasmonic structure can be further optimized to attain sensitivities up to 5 × 103 RIU–1.



Fields, Particles, and Nuclei
Novel approach to deriving the canonical generating functional in lattice QCD at a finite chemical potential
Аннотация
A novel approach to the problem of deriving the generating functional for the canonical ensemble in lattice QCD at a nonzero chemical potential is proposed. The derivation proceeds in several steps. First, the baryon density for imaginary values of the chemical potential is obtained. Then, again for imaginary values of the chemical potential, the generating functional of the grand canonical ensemble is derived. In this analysis, a fit of baryon density is employed toward simplifying the procedure of numerical integration. Finally, the generating potential for the canonical ensemble is derived using a high-precision numerical Fourier transform. The generating functional for the canonical ensemble is also derived using the known hopping-parameter expansion, and the results obtained with the two methods are compared for the deconfinement phase in the lattice QCD with two flavors.



Knockout of deuterons and tritons with large transverse momenta in pA collisions involving 50-GeV protons
Аннотация
Formation of the d and t cumulative light nuclear fragments emitted from the nucleus with large transverse momenta at an angle of 35° in the laboratory frame is investigated. The data on collisions of 50-GeV protons with the C, Al, Cu, and W nuclei are collected using the extracted proton beam of the IHEP accelerator and the SPIN detector. The results indicate that the dominant contribution to formation of nuclear fragments comes from the local process of direct knockout from the nucleus.



Condensed Matter
Voltage plateaus on V(I) curves of long quasi-one-dimensional superconducting wires (without microwave irradiation)
Аннотация
Segments of an almost constant voltage (plateaus) on the V(I) curves of long quasi-one-dimensional superconducting aluminum wires placed in a magnetic field are found slightly below Tc, which are unexpected at the parameters and geometry considered in this work. These plateaus are assumingly attributed to subharmonics of the superconducting gap and are due to multiple Andreev reflection and strong quasiparticle heating, which occur in the nonequilibrium region of a wire. The plateaus indicate the coexistence of superconductivity and dissipation in these wires. These results cannot be described by the existing theories.



Terahertz resistive response of a two-dimensional topological insulator in a quasiballistic transport regime
Аннотация
The terahertz resistive response of a two-dimensional topological insulator in a HgTe quantum well in the quasiballistic transport regime is studied. The photoresistance appearing only near the charge neutrality point is detected. The application of the magnetic field up to 4 T in the plane of the quantum well results in an increase in the photoresistance in the peak and in the expansion of the region near the charge neutrality point where it exists. The reported results imply that the observed photoresistance is due to transitions involving edge dispersion branches of the two-dimensional topological insulator.



Observation of the variations of the domain structure of a spontaneous electric field in a two-dimensional electron system under microwave irradiation
Аннотация
It has been found on a sample of the GaAs/AlGaAs heterostructure with the two-dimensional electron system that different configurations of domains of a spontaneous electric field are possible within one microwave- induced state with the resistance tending to zero. Transitions between such configurations are observed at the variation of the radiation power and magnetic field. In the general case, the configuration of domains is more complicated than existing models. The fragment of the distribution of the electric field in the sample for one of the observed configurations is in agreement with the rhombic domain structure considered by I. G. Finkler and B. I. Halperin, Phys. Rev. B 79, 085315 (2009).



Self-propagating crystallization waves in the TiCu amorphous alloy
Аннотация
Self-propagating crystallization waves are detected and experimentally demonstrated in the Ti50Cu50 amorphous alloy obtained by the melt spinning (ultrafast quenching) method. High-speed thermographic recording has shown that crystallization waves can appear spontaneously at the heating of an amorphous strip to 300–350°С or at the local initiation by a hot tungsten coil of a small segment of the strip preliminarily heated to 230–250°С. In the former case, the crystallization wave propagates at a velocity of ~7 cm/s; in the latter case, the crystallization wave propagates in a self-oscillation mode at an average velocity of ~1.2 cm/s. The temperature gradient across the wavefront is about 150°С. The samples crystallized in the self-oscillation mode have a characteristic banded structure with a smaller grain in depression regions. The crystallization product in all samples is the TiCu tetragonal intermetallic phase.



Scientific Summaries
Spin-polaron nature of fermion quasiparticles and their d-wave pairing in cuprate superconductors
Аннотация
In the framework of the spin-fermion model, to which the Emery model is reduced in the limit of strong electron correlations, it is shown that the fermion quasiparticles in cuprate high-Tc superconductors (HTSCs) arise under a strong effect of exchange coupling between oxygen holes and spins of copper ions. This underlies the spin-polaron nature of fermion quasiparticles in cuprate HTSCs. The Cooper instability with respect to the d-wave symmetry of the order parameter is revealed for an ensemble of such quasiparticles. For the normal phase, the spin-polaron concept allows us to reproduce the fine details in the evolution of the Fermi surface with the changes in the doping level x observed in experiment for La2-xSrxCuO4. The calculated T–x phase diagram correlates well with the available experimental data for cuprate HTSCs.


