Effect of barothermal processing on the microstructure and properties of Al–10 at % Si hypoeutectic binary alloy


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We describe barothermal processing (hot isostatic pressing) of an Al–10 at % Si binary alloy for 3 h at a temperature of 560°C and pressure of 100 MPa. The results demonstrate that this processing ensures a high degree of homogenization of the as-prepared alloy, which is chemically and structurally inhomogeneous. The morphology of the silicon microparticles in the material suggests that heat treatment of the Al–10 at % Si alloy at 560°C and a pressure of 100 MPa leads to a thermodynamically driven, essentially complete silicon dissolution in the aluminum matrix and the formation of a metastable, supersaturated solid solution, which subsequently decomposes during cooling. We analyze the associated porosity elimination process, which makes it possible to obtain a material with 100% relative density. Barothermal processing of the Al–10 at % Si alloy is shown to produce a bimodal size distribution of the silicon phase constituent: microparticles 1.6 µm in average size and nanoparticles 43 nm in average size. Barothermal processing is shown to reduce the thermal expansion coefficient of the alloy, and the microhardness of the two-phase alloy is determined. Based on the present results, we conclude that barothermal processing is an effective tool for eliminating microporosity from the Al–10 at % Si alloy, reaching a high degree of homogenization, and producing a near-optimal microstructure, which surpasses results of conventional heat treatment of the material at atmospheric and reduced pressures.

Sobre autores

E. Dedyaeva

Baikov Institute of Metallurgy and Materials Science

Email: padalko@inbox.ru
Rússia, Leninskii pr. 49, Moscow, 119991

P. Nikiforov

Ufa Engine Industrial Association Public Joint Stock Company

Autor responsável pela correspondência
Email: padalko@inbox.ru
Rússia, ul. Ferina 2, Ufa, 450039

A. Padalko

Baikov Institute of Metallurgy and Materials Science

Email: padalko@inbox.ru
Rússia, Leninskii pr. 49, Moscow, 119991

G. Talanova

Baikov Institute of Metallurgy and Materials Science

Email: padalko@inbox.ru
Rússia, Leninskii pr. 49, Moscow, 119991

L. Shvorneva

Baikov Institute of Metallurgy and Materials Science

Email: padalko@inbox.ru
Rússia, Leninskii pr. 49, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016