Effect of barothermal processing on the microstructure and properties of Al–10 at % Si hypoeutectic binary alloy
- Авторлар: Dedyaeva E.V.1, Nikiforov P.N.2, Padalko A.G.1, Talanova G.V.1, Shvorneva L.I.1
-
Мекемелер:
- Baikov Institute of Metallurgy and Materials Science
- Ufa Engine Industrial Association Public Joint Stock Company
- Шығарылым: Том 52, № 7 (2016)
- Беттер: 721-728
- Бөлім: Article
- URL: https://journals.rcsi.science/0020-1685/article/view/157795
- DOI: https://doi.org/10.1134/S0020168516070049
- ID: 157795
Дәйексөз келтіру
Аннотация
We describe barothermal processing (hot isostatic pressing) of an Al–10 at % Si binary alloy for 3 h at a temperature of 560°C and pressure of 100 MPa. The results demonstrate that this processing ensures a high degree of homogenization of the as-prepared alloy, which is chemically and structurally inhomogeneous. The morphology of the silicon microparticles in the material suggests that heat treatment of the Al–10 at % Si alloy at 560°C and a pressure of 100 MPa leads to a thermodynamically driven, essentially complete silicon dissolution in the aluminum matrix and the formation of a metastable, supersaturated solid solution, which subsequently decomposes during cooling. We analyze the associated porosity elimination process, which makes it possible to obtain a material with 100% relative density. Barothermal processing of the Al–10 at % Si alloy is shown to produce a bimodal size distribution of the silicon phase constituent: microparticles 1.6 µm in average size and nanoparticles 43 nm in average size. Barothermal processing is shown to reduce the thermal expansion coefficient of the alloy, and the microhardness of the two-phase alloy is determined. Based on the present results, we conclude that barothermal processing is an effective tool for eliminating microporosity from the Al–10 at % Si alloy, reaching a high degree of homogenization, and producing a near-optimal microstructure, which surpasses results of conventional heat treatment of the material at atmospheric and reduced pressures.
Негізгі сөздер
Авторлар туралы
E. Dedyaeva
Baikov Institute of Metallurgy and Materials Science
Email: padalko@inbox.ru
Ресей, Leninskii pr. 49, Moscow, 119991
P. Nikiforov
Ufa Engine Industrial Association Public Joint Stock Company
Хат алмасуға жауапты Автор.
Email: padalko@inbox.ru
Ресей, ul. Ferina 2, Ufa, 450039
A. Padalko
Baikov Institute of Metallurgy and Materials Science
Email: padalko@inbox.ru
Ресей, Leninskii pr. 49, Moscow, 119991
G. Talanova
Baikov Institute of Metallurgy and Materials Science
Email: padalko@inbox.ru
Ресей, Leninskii pr. 49, Moscow, 119991
L. Shvorneva
Baikov Institute of Metallurgy and Materials Science
Email: padalko@inbox.ru
Ресей, Leninskii pr. 49, Moscow, 119991
Қосымша файлдар
