Analysis of The Efficiency of Several Short-Term Solar Flare Forecasting Techniques Based on Observations of Different Solar Atmospheric Layers
- Авторлар: Knyazeva I.S.1, Lysov I.I.1, Kurochkin E.A.1, Korelov M.S.1, Makarenko N.G.1
-
Мекемелер:
- Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo
- Шығарылым: Том 65, № 8 (2025)
- Беттер: 1133–1141
- Бөлім: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/376046
- DOI: https://doi.org/10.7868/S3034502225080018
- ID: 376046
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
I. Knyazeva
Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo
Email: iknyazeva@gmail.com
St. Petersburg, Russia
I. Lysov
Central Astronomical Observatory of the Russian Academy of Sciences at PulkovoSt. Petersburg, Russia
E. Kurochkin
Central Astronomical Observatory of the Russian Academy of Sciences at PulkovoSt. Petersburg, Russia
M. Korelov
Central Astronomical Observatory of the Russian Academy of Sciences at PulkovoSt. Petersburg, Russia
N. Makarenko
Central Astronomical Observatory of the Russian Academy of Sciences at PulkovoSt. Petersburg, Russia
Әдебиет тізімі
- Abed A.K., Qahwaji R., Abed A. The automated prediction of solar flares from SDO images using deep learning // Advances in Space Research. V. 67. No. 8. P. 2544–2557. https://doi.org/10.1016/j.asr.2021.01.042.2021.
- Abduallah Y., Wang J.T.L., Wang H., Xu Y. Operational prediction of solar flares using a transformer-based framework // Sci. Rep. V. 13. P. 13665. 2023.
- Abramenko V.I., Yurchyshyn V.B., Wang H., et al. Signature of an Avalanche in Solar Flares as Measured by Photospheric Magnetic Fields // The Astrophysical Journal. V. 597. No. 2. P. 1135. https://doi.org/10.1086/378492.2003.
- Bloomfield D.S., Higgins P.A., McAteer R.T.J., Gallagher P.T. Toward reliable benchmarking of solar flare forecasting methods // The Astrophysical Journal Letters. V. 747. No. 2. P. L41. https://doi.org/10.1088/2041-8205/747/2/L41.2012.
- Bogod V.M., Svidskiy P.M., Kurochkin, et al. A Method of Forecasting Solar Activity Based on Radio Astronomical Observations // Astrophysical Bulletin. V. 73. No. 4. P. 478–486. https://doi.org/10.1134/S1990341318040119.2018.
- Crown M.D. Validation of the NOAA Space Weather Prediction Center’s solar flare forecasting look-up table and forecaster-issued probabilities // Space Weather. V. 10. No. 6. LS06006. 2012. https://doi.org/10.1029/2011SW000760.
- Gallagher P.T., Moon Y.-J., Wang H. Active-Region Monitoring and Flare Forecasting – I. Data Processing and First Results // Solar Physics. V. 209. No. 1. P. 171–183. 2002. https://doi.org/10.1023/A:1020950221179.
- Ishkov V.N. Predicting Solar Flare Phenomena: Solar Proton Events // Bulletin of the Russian Academy of Sciences: Physics. V. 87. No. 7. P. 942–944. 2023. https://doi.org/10.3103/S1062873823702763.
- Knyazeva I., Lysov I., Kurochkin E., et al. A robust preprocessing pipeline for RATAN-600 solar radio observations data // Astronomy and Computing. V. 51. 100918. 2025. https://doi.org/10.1016/j.ascom.2024.100918.
- Leka K.D., Park S.H., Kusano K., et al. A Comparison of Flare Forecasting Methods. III. Systematic Behaviors of Operational Solar Flare Forecasting Systems // The Astrophysical Journal. V. 881. No. 2. P. 101–114. 2019. https://doi.org/10.3847/1538-4357/ab2e11.
- Liu S., Xu L., Zhao Z., et al. Deep Learning Based Solar Flare Forecasting Model. II. Influence of Image Resolution // The Astrophysical Journal. V. 941. No. 1. P. 20. 2022. https://doi.org/10.3847/1538-4357/ac99dc.
- Nishizuka N., Kubo Y., Sugiura K., et al. Operational solar flare prediction model using Deep Flare Net // Earth, Planets and Space. V. 73. No. 1. P. 64. 2021. https://doi.org/10.1186/s40623-021-01381-9.
- Park S., Leka K., Kusano K., et al. A Comparison of Flare Forecasting Methods. IV. Evaluating Consecutive-Day Forecasting Patterns // The Astrophysical Journal. 2020. V. 890. No. 124. P. 124. 2020. https://doi.org/10.3847/1538-4357/ab65f0.
- Peterova N.G., Topchilo N.A., Kurochkin E.A. Increased Microwave Radiation Brightness as a Sign of Flare-Producing Active Regions Based on Observations of NOAA Active Region 12371 // Geomagnetism and Aeronomy. V. 61. No. 1. P. S24–S35. 2021. https://doi.org/10.1134/S001679322020110145.
- Popowicz A. Toward Reliable Solar Flare Forecasting: Exploring Multi-Wavelength Data from the Solar Dynamics Observatory // Preprints. 2025010895. 2025. https://doi.org/10.20944/preprints202501.0895.v1.
- Sinha S., Gupta O., Singh V., et al. A Comparative Analysis of Machine-learning Models for Solar Flare Forecasting: Identifying High-performing Active Region Flare Indicators // The Astrophysical Journal. V. 935. No. 1. P. 45. 2022. https://doi.org/10.3847/1538-4357/ac7955.
- Song H., Tan C., Jing J., et al. Statistical Assessment of Photospheric Magnetic Features in Imminent Solar Flare Predictions // Solar Physics. V. 254. No. 1. P. 101–125. 2009. https://doi.org/10.1007/s11207-008-9288-3.
- Tanaka H., Enome S. The microwave structure of coronal condensations and its relation to proton flares // Solar Physics. V. 40. No. 1. P. 123–131. 1975. https://doi.org/10.1007/BF00183156.
- Tang R., Liao W., Chen Z., et al. Solar Flare Prediction Based on the Fusion of Multiple Deep-learning Models // The Astrophysical Journal Supplement Series. V. 257. No. 2. P. 50. 2021. https://doi.org/10.3847/1538-4365/ac249e.
Қосымша файлдар

