Recording Time Delay of Sudden Magnetic Storm at Different Magnetic Observatories: Analysis of Individual Events
- Authors: Zagainova I.S.1, Gromov S.V.1, Gromova L.I.1, Fainshtein V.G.2
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, RAS (IZMIRAN)
- Institute of Solar–Terrestrial Physics, Siberian Branch, RAS (ISTP SB RAS)
- Issue: Vol 65, No 5 (2025)
- Pages: 714-727
- Section: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/352729
- DOI: https://doi.org/10.7868/S3034502225050149
- ID: 352729
Cite item
Abstract
The problem of simultaneous detection of a sudden commencement (SC) and a main impulse (MI) of a geomagnetic storm by different magnetic stations is discussed using the example of two SC-events of March 17, 2013 and March 17, 2015. The interplanetary coronal mass ejections and associated shock waves that caused the studied the SC-events under investigation are identified as coronal mass ejections observed near the Sun, whose source regions were located in different solar hemispheres. The linear velocities projections of the two sampled noticeable difference in the velocities of the associated interplanetary shock waves. One-second time resolution data were used to relate the detection start times of SC and MI to the latitude and longitude of the magnetic station on the Earth's surface for each SC-event analyzed; trends were found in the form of a linear or quadratic relationship. We used an original approach to determine the SC and MI detection start times. A conclusion was made that the SC and MI detection start times can differ from a few seconds to more than one minute on magnetic observatories located at different geographical latitudes and longitudes. The magnetic stations that first to detected SC and MI in each analyzed SC-event were identified. It was suggested that the position of the first station that detect SC and MI depends on the characteristics of the interplanetary shock waves affecting the Earth’s magnetosphere.
About the authors
I. S. Zagainova
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, RAS (IZMIRAN)
Author for correspondence.
Email: yuliazagainova@mail.ru
Moscow, Troitsk, Russia
S. V. Gromov
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, RAS (IZMIRAN)
Email: yuliazagainova@mail.ru
Moscow, Troitsk, Russia
L. I. Gromova
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, RAS (IZMIRAN)
Email: yuliazagainova@mail.ru
Moscow, Troitsk, Russia
V. G. Fainshtein
Institute of Solar–Terrestrial Physics, Siberian Branch, RAS (ISTP SB RAS)
Email: yuliazagainova@mail.ru
Irkutsk, Russia
References
- Акасофу С.И., Чепмен С. Солнечно-земная физика. 2-я. Перевод с англ. М.: Изд-во “Мир”, 512 с. 1975.
- Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976–2000 гг. // Космические исследования. Т. 47. № 2. С. 99–113. 2009. https://doi.org/10.1134/S0010952509020014
- Загайнова Ю.С., Громов С.В., Громова Л.И., Файнштейн В.Г. Изучение внезапного начала магнитной бури по наблюдениям с секундным временным разрешением // Геомагнетизм и аэрономия. Т. 64. № 3. С. 348‒362. 2024. https://doi.org/10.31857/S0016794024030034
- Нишида А. Геомагнитный диагноз магнитосферы. Перевод с англ. М.: Изд-во “Мир”, 306 с. 1980.
- Пархомов В.А. О тонкой структуре предварительного импульса внезапного начала магнитных бурь // Геомагнетизм и аэрономия. Т. 25. № 3. С. 420‒424. 1985.
- Пархомов В.А., Бородкова Н.Л., Яхнин А.Г., Суворова А.В., Довбня Б.В., Пашинин А.Ю., Козелов Б.В. Глобальный импульсный всплеск геомагнитных пульсаций в частотном диапазоне 0.2–5 Гц, как предвестник внезапного начала геомагнитной бури Святого Патрика 17 марта 2015 г. // Космические исследования. Т. 55. № 5. С. 323–336. 2017. https://doi.org/10.7868/S0023420617050016
- Araki T. Global structure of geomagnetic sudden commencements // Planet. Space Sci. V. 25. № 4. P. 373–384. 1977. https://doi.org/10.1016/0032-0633(77)90053-8
- Araki T. A physical model of the geomagnetic sudden commencement / Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves. Eds. M.J. Engebretson, K. Takahashi, M. Scholer. Geophys. Monograph. V. 81. Washington, D.C.: AGU. P. 183–200. 1994. https://doi.org/10.1029/GM081p0183
- Araki T., Shinbori A. Relationship between solar wind dynamic pressure and amplitude of geomagnetic sudden commencement (SC) // Earth Planets Space. V. 68. ID 90. 2016. https://doi.org/10.1186/s40623-016-0444-y
- Bocchialini K., Grison B., Menvielle M. et al. Statistical analysis of solar events associated with Storm Sudden Commencements over one year of solar maximum during cycle 23: Propagation from the Sun to the Earth and effects // Solar Phys. V. 293. № 5. ID 75. 2018. https://doi.org/10.1007/s11207-018-1278-5
- Brueckner G.E., Howard R.A., Koomen M.J. et al. The large angle spectroscopic coronagraph (LASCO) // Solar Phys. V. 162. № 1-2. P. 357-402. 1995. https://doi.org/10.1007/BF00733434
- Curto J.J., Araki T., Alberca L.F. Evolution of the concept of Sudden Storm Commencements and their operative identification // Earth Planets Space. V. 59. P. i–xii. 2007. https://doi.org/10.1186/BF03352059
- Domingo V., Fleck B., Poland A.I. The SOHO mission: An overview // Solar Phys. V. 162. № 1-2. P. 1‒37. 1995. https://doi.org/10.1007/BF00733425
- Fathy A., Kim K.-H., Park J.-S., Jin H., Kletzing C., Wygant J.R., Ghamry E. Characteristics of Sudden Commencements observed by Van Allen Probes in the inner magnetosphere // J. Geophys. Res. − Space. V. 123. № 2. P. 1295−1304. 2018. https://doi.org/10.1002/2017JA024770
- Hundhausen A.J. Coronal expansion and solar wind. Berlin, Heidelberg: Springer-Verlag, 238 p. 1972. https://doi.org/10.1007/978-3-642-65414-5
- Kikuchi T., Araki T. Transient response of uniform ionosphere and preliminary reverse impulse of geomagnetic storm sudden commencement // J. Atmos. Sol.-Terr. Phy. V. 41. № 9. P. 917–925. 1979. https://doi.org/10.1016/0021-9169(79)90093-X
- Mayaud P. Analysis of storm sudden commencements for the years 1868–1967 // J. Geophys. Res. V. 80. № 1. P. 111–122. 1975. https://doi.org/10.1029/JA080i001p00111
- Nishimura Y., Kikuchi T., Ebihara Y., Yoshikawa A., Imajo S., Li W., Utada H. Evolution of the current system during solar wind pressure pulses based on aurora and magnetometer observations // Earth Planets Space. V. 68. ID 144. 2016. https://doi.org/10.1186/s40623-016-0517-y
- Pezzopane M., Del Corpo A., Piersanti M., Cesaroni C., Pignalberi A., Di Matteo S., Spogli L., Vellante M., Heilig B. On some features characterizing the plasmasphere–magnetosphere–ionosphere system during the geomagnetic storm of 27 May 2017 // Earth Planets Space. V. 71. ID 77. 2019. https://doi.org/10.1186/s40623-019-1056-0
- Singh Y.P., Badruddin B., Agarwal S. Occurrence of sudden storm commencement in interplanetary space // Adv. Space Res. V. 74. № 10. P. 5252‒5262. 2024. https://doi.org/10.1016/j.asr.2024.07.065
- Smith A.W., Forsyth C., Rae J., Rodger G.J., Freeman M.P. The impact of Sudden Commencements on ground magnetic field variability: Immediate and delayed consequences // Space Weather. V. 19. № 7. ID e2021SW002764. 2021. https://doi.org/10.1029/2021SW002764
- Sun T.R., Wang C., Zhang J.J., Pilipenko V.A., Wang Y., Wang J.Y. The chain response of the magnetospheric and ground magnetic field to interplanetary shocks // J. Geophys. Res. – Space. V. 120. № 1. P. 157–165. 2015. https://doi.org/10.1002/2014JA020754
- Veretenenko S., Ogurtsov M., Obridko V. Long-term variability in occurrence frequencies of magnetic storms with sudden and gradual commencements // J. Atmos. Sol.-Terr. Phy. V. 205. ID 105295. 2020. https://doi.org/10.1016/j.jastp.2020.105295
- Zhou Y.-L., Lühr H. Initial response of nightside auroral currents to a Sudden Commencement: Observations of electrojet and substorm onset // J. Geophys. Res. − Space. V. 127. № 4. ID e2021JA030050. 2022. https://doi.org/10.1029/2021JA030050
Supplementary files

