Analysis of the relationship between the Dst-index and the heliosphere parameters during the development of CME- and CIR-storms
- Authors: Kurazhkovskaya N.A.1, Klain B.I.1, Zotov O.D.1, Kurazhkovskii A.Y.1
-
Affiliations:
- Borok Geophysical Observatory, Branch of the Schmidt Institute of Physics of the Earth, RAS (GO Borok IPE RAS), Borok, Yaroslavl oblast, Russia
- Issue: Vol 65, No 5 (2025)
- Pages: 629-641
- Section: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/352722
- DOI: https://doi.org/10.7868/S3034502225050077
- ID: 352722
Cite item
Abstract
The mean statistical dependence of the Dst-index on the heliospheric parameters during the development of storms initiated by solar coronal mass ejections (CME-storms) and corotating interaction regions (CIR-storms) is analyzed. It is found that the dynamics of the Dst-index and the β-parameter (equal to the ratio of the thermal pressure to the magnetic pressure) are qualitatively similar during the development of storms caused by CME and CIR flows. In the main phase of the CME- and CIR-storms, the mean statistical value of the β-parameter is β < 1 and β > 1, respectively, which manifests different plasma turbulence in the solar wind flows. It is shown that in the area of developing CME- and CIR-storm, the trajectory of Dst variation depending on the heliosphere parameters in the main phase of storms does not coincide with its trajectory in the recovery phase. This is a typical feature of the hysteresis phenomenon. The hysteresis effect between the Dst-index and the key parameters of the solar wind and interplanetary magnetic field (IMF) is observed during the development of both types of storms, indicating a nonlinear nature of the relationship between Dst and heliospheric parameters. The shape and size of the hysteresis loops vary depending on the analyzed parameters. The hysteresis loops for CIR-storms are smaller in area than those for CME-storms. It is found that in the period preceding the occurrence of CME- and CIR-storms, the solar wind flows have a closed configuration of the IMF intensity vector B in the ecliptic plane with different directions of the rotation.
About the authors
N. A. Kurazhkovskaya
Borok Geophysical Observatory, Branch of the Schmidt Institute of Physics of the Earth, RAS (GO Borok IPE RAS), Borok, Yaroslavl oblast, Russia
Author for correspondence.
Email: knady@borok.yar.ru
B. I. Klain
Borok Geophysical Observatory, Branch of the Schmidt Institute of Physics of the Earth, RAS (GO Borok IPE RAS), Borok, Yaroslavl oblast, Russia
Email: klain@borok.yar.ru
O. D. Zotov
Borok Geophysical Observatory, Branch of the Schmidt Institute of Physics of the Earth, RAS (GO Borok IPE RAS), Borok, Yaroslavl oblast, Russia
Email: ozotov@inbox.ru
A. Y. Kurazhkovskii
Borok Geophysical Observatory, Branch of the Schmidt Institute of Physics of the Earth, RAS (GO Borok IPE RAS), Borok, Yaroslavl oblast, Russia
Email: ksasha@borok.yar.ru
References
- Данилова О.А., Птицына Н.Г., Сдобнов В.E. Явления гистерезиса в отклике геомагнитной активности и параметров космических лучей на вариации межпланетной среды во время магнитной бури // Солнечно-земная физика. Т. 10. № 3. 2024. С. 70–78. https://doi.org/10.12737/szf-103202408
- Дремухина Л.А., Ермолаев Ю.И., Лодкина И.Г. Динамика межпланетных параметров и геомагнитных индексов в периоды магнитных бурь, инициированных разными типами солнечного ветра // Геомагнетизм и аэрономия. 2019. Т. 59. № 6. С. 683–695. https://doi.org/10.1134/S0016794019060063
- Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976‒2000 гг. // Космические исследования. Т. 47. № 2. С. 99–113. 2009.
- Ермолаев Ю.И., Лодкина И.Г., Николаева Н.С., Ермолаев М.Ю. Статистическое исследование влияния межпланетных условий на геомагнитные бури // Космические исследования. Т. 48. № 6. С. 499‒515. 2010.
- Ермолаев Ю.И., Лодкина И.Г., Николаева Н.С., Ермолаев М.Ю. Статистическое исследование влияния межпланетных условий на геомагнитные бури. 2. Вариации параметров // Космические исследования. Т. 49. № 1. С. 24–37. 2011.
- Клайн Б.И., Зотов О.Д., Куражковская Н.А. Влияние конфигурации межпланетного магнитного поля (ММП) на развитие магнитных бурь. Семнадцатая ежегодная конференция “Физика плазмы в солнечной системе”. Сборник тезисов. ИКИ РАН, Москва, 7–11 февраля 2022 г. С. 146. 2022.
- Козырева О.В., Клейменова Н.Г. Вариации ULF-индекса дневных геомагнитных пульсаций во время рекуррентных магнитных бурь // Геомагнетизм и аэрономия. Т. 50. № 6. С. 799–809. 2010.
- Куражковская Н.А., Зотов О.Д., Клайн Б.И. Связь развития геомагнитных бурь с параметром β солнечного ветра // Солнечно-земная физика. Т. 7. № 4. С. 25–34. 2021. https://doi.org/10.12737/szf-74202104
- Куражковская Н.А., Куражковский А.Ю. Эффект гистерезиса между индексами геомагнитной активности (Ap, Dst) и параметрами межпланетной среды в 21–24 циклах солнечной активности // Солнечно-земная физика. Т. 9. № 3. С. 73–82. 2023. https://doi.org/10.12737/szf-93202308
- Куражковская Н.А., Клайн Б.И., Зотов О.Д., Куражковский А.Ю. Гистерезисные циклы и инвариантность формы Dst-индекса во время развития геомагнитных бурь // Солнечно-земная физика. Т. 11. № 2. С. 45–55. 2025. https://doi.org/10.12737/szf-112202504
- Обридко В.Н., Канониди Х.Д., Митрофанова Т.А., Шельтинг Б.Д. Солнечная активность и геомагнитные возмущения // Геомагнетизм и аэрономия. Т. 53. № 2. С. 157–166. 2013. https://doi.org/10.7868/S0016794013010148
- Чернышов А.А., Карельский К.В., Петросян А.С. Подсеточное моделирование для исследования сжимаемой магнитогидродинамической турбулентности космической плазмы // УФН. Т. 184. № 5. C. 457‒492. 2014. https://doi.org/10.3367/UFNr.0184.201405a.0457
- Borovsky J.E., Funsten H.O. Role of solar wind turbulence in the coupling of the solar wind to the Earth’s magnetosphere // J. Geophys. Res. V. 108(A6). 1246‒1258. 2003. https://doi.org/10.1029/2002JA009601
- Borovsky J.E., Denton M.H. Differences between CME-driven storms and CIR-driven storms // J. Geophys. Res. V. 111. A07S08. 2006. https://doi.org/10.1029/2005JA011447
- Burlaga L.F., Sittier E.C., Mariani F., Schwenn R. Magnetic loops behind an interplanetary shock: Voyager, Helios and IMP-8 observations // J. Geophys. Res. V. 86. Issue A8. P. 6673–6684. 1981. https://doi.org/10.1029/JA086iA08p06673
- Burlaga L.F., Behannon K.W., Klein L.W. Compound streams, magnetic clouds, and major geomagnetic storms // J. Geophys. Res. V. 92. Issue A6. P. 5725–5734. 1987. https://doi.org/10.1029/JA092iA06p05725
- Georgieva K., Kirov B., Atanassov D., Boneva A. Impact of magnetic clouds on the middle atmosphere and geomagnetic disturbances // J. Atmos. Sol. Terr. Phys. V. 67 (1). P. 163–176. 2005. https://doi.org/10.1016/j.jastp.2004.07.025
- Gonzalez W.D., Echer E., Clua-Gonzalez A.L., Tsurutani B.T. Interplanetary origin of intense geomagnetic storms (Dst < ‒100 nT) during solar cycle 23 // Geophys. Res. Lett. V. 34. L06101. 2007. https://doi.org/10.1029/2006GL028879
- Guo J., Feng X., Zhang J., Zuo P., Xiang C. Statistical properties and geoefficiency of interplanetary coronal mass ejections and their heaths during intense geomagnetic storms // J. Geophys. Res. 2010. V. 115. A09107. https://doi.org/10.1029/2009JA015140
- Gupta V., Badruddin B. Interplanetary structures and solar wind behaviour during major geomagnetic perturbations // Journal of Atmospheric and Solar-Terrestrial Physics. V. 71. P. 885–896. 2009. https://doi.org/10.1016/j.jastp.2009.02.004
- Potapov A.S. ULF wave activity in high-speed streams of the solar wind: Impact on the magnetosphere // J. Geophys. Res. Space Physics. V. 118. P. 6465–6477. 2013. https://doi.org/10.1002/2013JA019119
- Richardson I.G., Cane H.V. Solar wind drivers of geomagnetic storms during more than four solar cycles // J. Space Weather Space Clim. V. 2. A01. 2012. https://doi.org/10.1051/swsc/2012001
- Simms L.E., Pilipenko V.A., Engebretson M.J. Determining the key drivers of magnetospheric Pc5 wave power // J. Geophys. Res. V. 115. A10241. 2010. https://doi.org/10.1029/2009JA015025
- Sun X., Zhima Z., Duan S., Hu Y., Lu C., Ran Z. Statistical Analysis of the Correlation between Geomagnetic Storm Intensity and Solar Wind Parameters from 1996 to 2023 // Remote Sens. V. 16. 2952. 2024. https://doi.org/10.3390/rs16162952
- Taylor J.R., Lester M., Yeoman T.K. A superposed epoch analysis of geomagnetic storms // Ann. Geophys. V. 12. Iss. 7. P. 612–624. 1994. https://doi.org/10.1007/s00585-994-0612-4
- Tsurutani B.T., Gonzalez W.D., Gonzalez A.L.C., Guarnieri F.L., Gopalswamy N., Grande M., Kamide Y., Kasahara Y., Lu G., Mann I., McPherron R., Soraas F., Vasyliunas V. Corotating solar wind streams and recurrent geomagnetic activity: A review // J. Geophys. Res. V. 111. A07S01. 2006. https://doi.org/10.1029/2005JA011273
- Turner N.E., Cramer W.D., Earles S.K., Emery B.A. Geoefficiency and energy partitioning in CIR-driven and CME-driven storms // Journal of Atmospheric and Solar-Terrestrial Physics. V. 71. P. 1023–1031. 2009. https://doi.org/10.1016/j.jastp.2009.02.005
- Wang X., Tu C.-Y., He J.-S., Wang L.-H. Ion-scale spectral break in the normal plasma beta range in the solar wind turbulence // J. Geophys. Res. Space Physics. V. 123. P. 68–75. 2018. https://doi.org/10.1002/2017JA024813
- Yermolaev Yu.I., Nikolaeva N.S., Lodkina I.G., Yermolaev M.Yu. Specific interplanetary conditions for CIR-, Sheath-, and ICME-induced geomagnetic storms obtained by double superposed epoch analysis // Ann. Geophys., V. 28. P. 2177–2186. 2010. https://doi.org/10.5194/angeo-28-2177-2010
- Yermolaev Yu.I., Lodkina I.G., Nikolaeva N.S., Yermolaev M.Yu. Dynamics of large-scale solar wind streams obtained by the double superposed epoch analysis // J. Geophys. Res. Space Physics. V. 120. P. 7094–7106. 2015. https://doi.org/10.1002/2015JA021274
- Zotov O., Klain B., Kurazhkovskaya N., Kurazhkovskii A. Hysteresis cycles and invariance of the Dst index form during geomagnetic storm development. 15th International Conference and School Problems of Geocosmos. Abstracts. St. Peterburg, Russia, April 22‒26, 2024.
Supplementary files

