Influence of Solar Wind Stream Interaction Regions on the Proton Event on August 27, 2022
- Authors: Vlasova N.A.1, Bazilevskaya G.A.2, Ginzburg E.A.3, Daibog E.I.1, Dmitriev A.V.1, Kalegaev V.V.1,4, Kaportseva K.B.1,4, Logachev Y.I.1, Myagkova I.N.1, Suvorova A.V.1
-
Affiliations:
- Skobeltsyn Institute of Nuclear Physics, Moscow State University
- Lebedev Physical Institute, RAS
- Fedorov Institute of Applied Geophysics
- Lomonosov Moscow State University, Faculty of Physics
- Issue: Vol 65, No 5 (2025)
- Pages: 569-581
- Section: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/352716
- DOI: https://doi.org/10.7868/S3034502225050017
- ID: 352716
Cite item
Abstract
The influence of large-scale interplanetary structures on the propagation of solar energetic particles on August 27, 2022 is studied. The dynamics of particles fluxes, observed at the Lagrange point L1 and in the near-Earth space has a number of particular features, such as the synchronous local maxima of electron andproton fluxes of different energies during the flux growth phase and the anisotropy of the solar proton flux for about 12 hours. The time profiles of solar protons observed near the Earth are similar to those observed at L1 point, though with a delay of more than an hour. We suppose that the observed features can be explained by modulation processes during the propagation of particles inside the leading compression region ahead of the high-speed solar wind stream from the coronal hole.
About the authors
N. A. Vlasova
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Author for correspondence.
Email: nav19iv@gmail.com
Moscow, Russia
G. A. Bazilevskaya
Lebedev Physical Institute, RAS
Email: nav19iv@gmail.com
Moscow, Russia
E. A. Ginzburg
Fedorov Institute of Applied Geophysics
Email: nav19iv@gmail.com
Moscow, Russia
E. I. Daibog
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Email: nav19iv@gmail.com
Moscow, Russia
A. V. Dmitriev
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Email: nav19iv@gmail.com
Moscow, Russia
V. V. Kalegaev
Skobeltsyn Institute of Nuclear Physics, Moscow State University; Lomonosov Moscow State University, Faculty of Physics
Email: nav19iv@gmail.com
Moscow, Russia; Moscow, Russia
K. B. Kaportseva
Skobeltsyn Institute of Nuclear Physics, Moscow State University; Lomonosov Moscow State University, Faculty of Physics
Email: nav19iv@gmail.com
Moscow, Russia; Moscow, Russia
Y. I. Logachev
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Email: nav19iv@gmail.com
Moscow, Russia
I. N. Myagkova
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Email: nav19iv@gmail.com
Moscow, Russia
A. V. Suvorova
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Email: nav19iv@gmail.com
Moscow, Russia
References
- Базилевская Г.А., Власова Н.А., Гинзбург Е.А., Дайбог Е.И., Калегаев В.В., Капорцева К.Б., Логачев Ю.И., Мягкова И.Н. Некоторые особенности солнечного протонного события 27.08.2022 // Известия Российской академии наук. Серия физическая. Т. 89. № 6. С. 886–889. 2025.
- Базилевская Г.А., Дайбог Е.И., Логачев Ю.И. Изолированные события солнечных космических лучей, обусловленные приходом быстрых штормовых частиц (ESP) // Геомагнетизм и аэрономия. Т. 63. № 4. С. 503–510. 2023. https://doi.org/10.31857/S0016794023600254
- Власова Н.А., Базилевская Г.А., Гинзбург Е.А., Дайбог Е.И., Калегаев В.В., Капорцева К.Б., Логачев Ю.И., Мягкова И.Н. Влияние процессов на Солнце и в межпланетной среде на солнечное протонное событие 30.03.2022 // Геомагнетизм и аэрономия, 2025. Т. 65. № 1. С. 25-39 doi: 10.31857/S0016794025010031
- Дайбог Е.И., Курт В.Г., Столповский В.Г. Спектр вспышечных протонов в области малых энергий // Космические исследования. Т. 19. № 5. С. 704–711. 1981.
- Ермаков С.И., Контор Н.Н., Любимов Г.П., Тулупов В.И., Чучков Е.А. Вспышка солнечных космических лучей в марте 1990 г. // Известия АН СССР. Серия физическая. Т. 55. № 10. С. 1889–1893. 1991.
- Кузнецов С.Н., Тверская Л.В. Проникновение космических лучей в магнитосферу / Модель космоса. Т. 2. Ред. М.И. Панасюк, Л.С. Новиков. М.: КДУ. С. 579–591. 2007.
- Логачев Ю.И., Базилевская Г.А., Власова Н.А., Гинзбург Е.А., Дайбог Е.И., Ишков В.Н., Лазутин Л.Л., Нгуен М.Д., Сурова Г.М., Яковчук О.С. Каталог солнечных протонных событий 24-го цикла солнечной активности (2009–2019 гг.). М.: МЦД, 970 с. 2022. https://doi.org/10.2205/ESDB-SAD-008
- Любимов Г.П., Контор Н.Н., Переслегина Н.В., Игнатьев П.П. Анизотропия солнечных протонов и неоднородности межпланетной среды // Известия АН СССР. Серия физическая. Т. 40. № 3. С. 462–470. 1976.
- Любимов Г.П. Диагностическая методика исследования межпланетного магнитного поля, плазмы солнечного ветра и их источников на Солнце // Известия АН СССР. Серия физическая. Т. 67. № 3. С. 353–366. 2003.
- Тверская Л.В. Диагностика магнитосферы по релятивистским электронам внешнего пояса и проникновению солнечных протонов (обзор) // Геомагнетизм и аэрономия. Т. 51. № 1. С. 8–24. 2011.
- Allen R.C., Smith E.J., Anderson B.J. et al. The solar wind at mesoscales – Revealing the missing link // Bulletin of the American Astronomical Society. V. 55. № 3. ID 008. 2023. https://doi.org/10.3847/25c2cfeb.3e75c979
- Bartleyr W.C., Bukata K.P., McCracken K.G., Rao U.R. Anisotropic cosmic radiation fluxes of solar origin // J. Geophys. Res. V. 71. № 13. P. 3297–3304. 1966. https://doi.org/10.1029/JZ071i013p03297
- Borovsky J.E. Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU? // J. Geophys. Res. – Space. V. 113. № 8. ID A08110. 2008. https://doi.org/10.1029/2007JA012684
- Borovsky J.E. The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar-wind monitor at L1 // J. Atmos. Sol.–Terr. Phy. V. 177. P. 2–11. 2018. https://doi.org/10.1016/j.jastp.2017.03.014
- Burlaga L., Berdichevsky D., Gopalswamy N., Lepping R., Zurbuchen T. Merged interaction regions at 1 AU // J. Geophys. Res. – Space. V. 108. № 12. ID 1425. 2003. https://doi.org/10.1029/2003JA010088
- Chen X., Li C. Three-stage acceleration of solar energetic particles detected by Parker Solar Probe // Astrophys. J. Lett. V. 967. № 2. ID L33. 2024. https://doi.org/10.3847/2041-8213/ad4a79
- Evans L.C., Stone E.C. Access of solar protons into polar cap. A persistent northsouth asymmetry // J. Geophys. Res. V. 74. № 21. P. 5127–5131. 1969. https://doi.org/10.1029/JA074i021p05127
- Fisk L.A., Lee M.A. Shock acceleration of energetic particles in corotating interaction regions in the solar wind // Astrophys. J. V. 237. P. 620–626. 1980.
- Klein K.-L., Dalla S. Acceleration and propagation of solar energetic particles // Space Sci. Rev. V. 212. № 3–4. P. 1107–1136. 2017. https://doi.org/10.1007/s11214-017-0382-4
- Khabarova O., Malandraki O., Malova H. et al. Current sheets, plasmoids and flux ropes in the heliosphere. Part I. 2-D or not 2-D? General and observational Aspects // Space Sci. Rev. V. 217. № 3. ID 38. 2021. https://doi.org/10.1007/s11214-021-00814-x
- Mazur J.E., Mason G.M., Dwyer J.R., Giacalone J. Jokipii J.R., Stone E.C. Interplanetary magnetic field line mixing deduced from impulsive solar flare particles // Astrophys. J. V. 532. № 1. ID L79. 2000. https://doi.org/10.1086/312561
- McCracken K.G., Ness N.F. The collimation of cosmic rays by the interplanetary magnetic field // J. Geophys. Res. V. 71. № 13. P. 3315–3318. 1966. https://doi.org/10.1029/JZ071i013p03315
- Morfill G., Scholer M. Study of the magnetosphere using energetic solar particles // Space Sci. Rev. V. 15. № 2–3. P. 267–353. 1973. https://doi.org/10.1007/BF00169322
- Neugebauer M., Giacalone J. Energetic particles, tangential discontinuities, and solar flux tubes // J. Geophys. Res. – Space. V. 120. № 10. P. 8281–8287. 2015. https://doi.org/10.1002/2015JA021632
- Reames D.V. Solar Energetic Particles. A Modern Primer on Understanding Sources, Acceleration and Propagation. Cham, Switzerland: Springer Nature, 225 p. 2021. https://doi.org/10.1007/978-3-030-66402-2
- Reames D.V. How do shock waves define the space-time structure of gradual solar energetic particle events? // Space Sci. Rev. V. 219. № 1. ID 14. 2023. https://doi.org/10.1007/s11214-023-00959-x
- Richardson I.G. Solar wind stream interaction regions throughout the heliosphere // Living Rev. Sol. Phy. V. 15. № 1. ID 1. 2018. https://doi.org/10.1007/s41116-017-0011-z
- Tan L.C., Malandraki O.E., Reames D.V., Ng C.K., Wang L., Dorrian G. Use of incident and reflected solar particle beams to trace the topology of magnetic clouds // Astrophys. J. V. 750. № 2. ID 146. 2012. https://doi.org/10.1088/0004-637X/750/2/146
- Zhao L., Li G., Ebert R.W., Dayeh M.A., Desai M.I., Mason G.M., Wu Z., Chen Y. Modeling transport of energetic particles in corotating interaction regions: A case study // J. Geophys. Res. – Space. V. 121. № 1. P. 77–92. 2016. https://doi.org/10.1002/2015JA021762
Supplementary files

