Influence of Large-Scale Auroral Inhomogeneities on the Radio Waves Passage under Conditions of Moderate Geomagnetic Storm
- 作者: Krasheninnikov I.V.1, Shubin V.N.1
-
隶属关系:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
- 期: 卷 64, 编号 6 (2024)
- 页面: 778-789
- 栏目: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/283578
- DOI: https://doi.org/10.31857/S0016794024060064
- EDN: https://elibrary.ru/QONOWS
- ID: 283578
如何引用文章
详细
We analyze the experimental results of multi-frequency oblique radio sounding of the ionosphere on the meridional transauroral radio path Norilsk-Irkutsk during the moderate geomagnetic storm on September 22, 2018 with a maximum value of the disturbance index Kp ~ 5. Based on the Global Dynamic Model of the Ionosphere (GDMI) ionosphere model, which takes into account the dynamic state of the basic large-scale structures of the polar ionosphere: the main ionospheric trough (GIP), polar oval and auroral E-layer, general correspondence of maximum observed frequencies (MOF 1F2) and calculated maximum usable frequencies (MUF 1F2) variations in the geomagnetic disturbance dynamics is shown. A physical explanation is given for the recorded phenomenon of complete blocking the radio waves transmission in local night conditions (“blackout”). The main factor of this effect manifestation is a presence of the auroral layer E in the ionosphere, generated by precipitating charged particles, highly inhomogeneous in the longitudinal section of the radio path. Under daytime conditions, the presence of auroral component in the E-layer leads to a weaker effect of degradation the multiple reflections traces on oblique radio sounding ionograms.
全文:

作者简介
I. Krasheninnikov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: krash@izmiran.ru
俄罗斯联邦, Troitsk
V. Shubin
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
Email: shubin@izmiran.ru
俄罗斯联邦, Troitsk
参考
- Акасофу С.И. Полярные и магнитосферные суббури // М: Мир, 320 с. 1971.
- Боярчук К.А., Иванов-Холодный Г.С., Коломийцев О.П. и др. Отклик среднеширотной ионосферы Земли на экстремальные события на Солнце в октябре–ноябре 2003 г. // Геомагнетизм и аэрономия. Т. 45. № 1. С. 84–91. 2005.
- Брюнелли Б.Е., Намгаладзе А.А. Физика ионосферы // М: Наука, 527 с., 1988.
- Веселовский И.С., Панасюк М.И., Авдюшин С.И. и др. Солнечные и гелиосферные явления в октябре – ноябре 2003 г.: причины и следствия // Космич. исслед. Т. 42. №5. С. 456–488. 2004.
- Деминов М.Г., Шубин В.Н. Эмпирическая модель положения главного ионосферного провала // Геомагнетизм и аэрономия. Т. 58. № 3. С. 366–373. 2018. https://doi.org/10.7868/S0016794018030070
- Деминов М.Г., Шубин В.Н., Бадин В.И. Модель критической частоты Е-слоя для авроральной области // Геомагнетизм и аэрономия. Т. 61. № 5. С. 610–617. 2021. https://doi.org/10.31857/S0016794021050059
- Дэвис К. Радиоволны в ионосфере. М.: Мир. 502 с. 1973.
- Кища П.В., Крашенинников И.В., Лукашкин В.М. Моделирование многочастотного распространения КВ-сигналов в высоких широтах // Геомагнетизм и аэрономия. Т. 31. № 1. C. 158–162. 1993.
- Кравцов Ю.А., Орлов Ю.И. Геометрическая оптика неоднородных сред, М., “Наука”, 304 с., 1980.
- Крашенинников И.В., Павлова Н.М., Ситнов Ю.С. Модель IRI в задаче прогнозирования ионосферного прохождения радиоволн в условиях высокой солнечной активности // Геомагнетизм и аэрономия. Т. 57. № 6. С. 774–782. 2017. https://doi.org/10.7868/S0016794017060050
- Крашенинников И.В., Шубин В.Н. Частотная зависимость энергетических параметров волнового поля на предельной дальности односкачкового распространения радиоволн в условиях низкой солнечной активности // Геомагнетизм и аэрономия. Т. 60. № 2. С. 220–228. 2020. https://doi.org/10.31857/S001679402002008X
- Крашенинников И.В., Шубин В.Н. Проявление аврорального Е-слоя в данных радиозондирования ионосферы в условиях геомагнитной бури низкой интенсивности (трансавроральная радиотрасса) // Гелиогеофизические исслед. Т. 42. С. 29–39. 2024.
- Куркин В.И., Полех Н.М., Золотухина Н.А. Влияние слабых магнитных бурь на характеристики распространения КВ-радиоволн // Геомагнетизм и аэрономия. Т. 62. № 2. С. 245-256. 2022. https://doi.org/10.31857/S0016794022020110
- Шубин В.Н., Деминов М.Г. Глобальная динамическая модель критической частоты F2-слоя ионосферы // Геомагнетизм и аэрономия. Т. 59. № 4. C. 461–473. 2019. https://doi.org/10.1134/S0016794019040151
- Akasofu S.I. The dynamic aurora // Sci. Am. (ISSN 0036-8733). V. 260. P. 90–97.1989.
- Besprozvannaya A.S., Shirochkov A.V. and Shchuka T.I. The dynamics of the high latitude ionospheric E region // J. Atmos. Terr. Phys. V. 42. P. 115–123. 1980. https://doi.org/10.1016/0021-9169(80)90071-9
- Bilitza D., Radicella S., Reinisch B., Adeniyi J., Mosert M., Zhang S., Obrou O. New B0 and B1 models for IRI //Adv. Space Res. V.25. N. 1. P. 89–95. 2000. https://doi.org/10.1016/S0273-1177(99)00902-3
- Bilitza D., Altadill D., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: from ionospheric climate to real-time weather predictions // Space Weather. V.15. P. 418–429. 2017. https://doi.org/10.1002/2016SW001593
- Cameron T.G., Fiori R.A.D., Warrington E.M. et al. Evaluation of the effect of sporadic-E on high frequency radio wave propagation in the Arctic // J. Atmos. Sol.-Terr. Phys. V. 228. 105826. 2022. https://doi.org/10.1016/j.jastp.2022.105826
- Danilov A.D., Laštovička J. Effects of geomagnetic storms on the ionosphere and atmosphere // Int. J. Geomagn. Aeron. V. 2. № 3. P. 209–224. 2001.
- Hunsucker R.D., Hargreaves J.K. The High-Latitude Ionosphere and its Effects on Radio Propagation // Cambridge University Press. New York. 617 p. 2003. https://doi.org/10.1017/CBO9780511535758
- Milan S.E., Jones T.B. and Warrington E.M. Enhanced MUF propagation of HF radio waves in the aurora1 zone // J. Atmos. Solar-Terr. Phys. V. 59. N. 2. P. 237–248. 1997. https://doi.org/10.1016/S1364-6826(96)00031-4
- Nava B., Coпsson P., Radicella S.M. A new version of the NeQuick ionosphere electron density model //J. Atmos. Sol.-Terr. Phys. V. 70 N. 15. P. 1856–1862. 2008. https://doi.org/10.1016/j.jastp.2008.01.015
- Nikolaeva V., Gordeev E., Sergienko T. et al. AIM-E: E-Region Auroral Ionosphere Model // Atmosphere, 12. 748.2021. https://doi.org/10.3390/atmos12060748
- Ruck J.J., Themens D.R. Impacts of auroral precipitation on HF propagation: A hypothetical over-the- horizon radar case study // Space Weather. 19. e2021SW002901. 2021. https://doi.org/10.1029/2021SW002901
- Yermolaev Yu.I. and Yermolaev M.Yu. Solar and Interplanetary Sources of Geomagnetic Storms: Space Weather Aspects // Izv. Atmos. Ocean Phys. V. 46. N. 7. P. 799–819. 2010.
补充文件
