Solar Wind Low-Temperature Intervals and Forbush Decreases: A Statistical Comparison
- Authors: Melkumyan A.A.1, Shlyk N.S.1, Belov A.V.1, Abunina M.A.1, Abunin A.A.1, Oleneva V.A.1, Yanke V.G.1
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
- Issue: Vol 64, No 5 (2024)
- Pages: 608-623
- Section: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/283268
- DOI: https://doi.org/10.31857/S0016794024050029
- EDN: https://elibrary.ru/QRNHEZ
- ID: 283268
Cite item
Abstract
Based on a large amount of experimental material, the hourly values of the solar wind speed and proton temperature were compared; the expected proton temperature and the temperature index (the ratio of the observed temperature to the expected one) were calculated. Using the Cosmic Ray Variations Database, from 1997 to 2022 low-temperature intervals were identified (intervals lasting more 2 hours, in which hourly values of the temperature index less than 0.5). The work investigated: a) statistical relationships between the parameters of low-temperature intervals and the characteristics of Forbush decreases associated with different types of solar sources; b) distributions of parameters of low-temperature intervals for interplanetary disturbances containing or not containing a magnetic cloud. The results obtained showed that with increasing duration of the low-temperature interval, the proportion of events associated with ejections from active regions increases, and the proportion of recurrent events and events associated with ejections outside active regions decreases. The correlation of the parameters of low-temperature intervals with the amplitude of Forbush decreases is weak, with the equatorial anisotropy of cosmic rays – moderate, with the north-south anisotropy – significant. The solar wind speed and magnetic field strength correlate moderately with the temperature index, and the correlation of the range of these parameters with the duration of low-temperature intervals is significant or strong.
Full Text

About the authors
A. A. Melkumyan
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Email: abunina@izmiran.ru
Russian Federation, Moscow, Troitsk
N. S. Shlyk
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Email: abunina@izmiran.ru
Russian Federation, Moscow, Troitsk
A. V. Belov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Email: abunina@izmiran.ru
Russian Federation, Moscow, Troitsk
M. A. Abunina
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Author for correspondence.
Email: abunina@izmiran.ru
Russian Federation, Moscow, Troitsk
A. A. Abunin
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Email: abunina@izmiran.ru
Russian Federation, Moscow, Troitsk
V. A. Oleneva
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Email: abunina@izmiran.ru
Russian Federation, Moscow, Troitsk
V. G. Yanke
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of Russian Academy of Sciences (IZMIRAN)
Email: abunina@izmiran.ru
Russian Federation, Moscow, Troitsk
References
- Абунина М.А., Белов А.В., Шлык Н.С., Ерошенко Е.А., Абунин А.А., Оленева В.А., Прямушкина И.И., Янке В.Г. Форбуш-эффекты, созданные выбросами солнечного вещества с магнитными облаками // Геомагнетизм и аэрономия. Т. 61. № 5. С. 572–582. 2021. https://doi.org/10.31857/S0016794021050023
- Белов А.В., Ерошенко Е.А., Янке Г.В., Оленева В.А., Абунина М.А., Абунин А.А. Метод глобальной съемки для мировой сети нейтронных мониторов // Геомагнетизм и аэрономия. Т. 58. № 3. С. 374–389. 2018. https://doi.org/10.7868/S0016794018030082
- Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976–2000 гг. // Космич. исслед. Т. 47. № 2. С. 99–113. 2009.
- Мелкумян А.А., Белов А.В., Абунина М.А., Абунин А.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Основные свойства Форбуш-эффектов, связанных с высокоскоростными потоками из корональных дыр // Геомагнетизм и аэрономия. Т. 58. № 2. С. 163–176. 2018. https://doi.org/10.7868/S0016794018020025
- Мелкумян А.А., Белов А.В., Абунина М.А., Абунин А.А., Ерошенко Е.А., Оленева В.А., Янке В.Г. Поведение скорости и температуры солнечного ветра в межпланетных возмущениях, создающих Форбуш-понижения // Геомагнетизм и аэрономия. Т. 60. № 5. С. 547–556. 2020. https://doi.org/10.31857/S0016794020040100
- Шлык Н.С., Белов А.В., Абунина М.А., Ерошенко Е.А., Абунин А.А., Оленева В.А., Янке В.Г. Влияние взаимодействующих возмущений солнечного ветра на вариации галактических космических лучей // Геомагнетизм и аэрономия. Т. 61. № 6. С. 694–703. 2021. https://doi.org/10.31857/S0016794021060134
- Belov A.V., Eroshenko E.A., Oleneva V.A., Struminsky A.B., Yanke V.G. What determines the magnitude of forbush decreases? // Adv. Space Res. V. 27. № 3. P. 625–630. 2001. https://doi.org/10.1016/S0273-1177(01)00095-3
- Belov A.V. Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena // Proc. IAU Symposium. № 257. P. 119–130. 2009. https://doi.org/10.1017/S1743921309029676
- Belov A., Abunin A., Abunina M., Eroshenko E., Oleneva V., Yanke V., Papaioannou A., Mavromichalaki H. Galactic cosmic ray density variations in Magnetic Clouds // Solar Phys. V. 290. P. 1429–1444. 2015. https://doi.org/10.1007/s11207-015-0678-z
- Bothmer V., Zhukov A. The Sun as the prime source of space weather. In: Space Weather- Physics and Effects. Springer Praxis Books. Springer, Berlin, Heidelberg. P. 31–102. 2007. https://doi.org/10.1007/978-3-540-34578-7_3
- Burlaga L.F., Ogilvie K.W. Heating of solar wind // ApJ. V. 159. P. 659–670. 1970. https://doi.org/10.1086/150340
- Burlaga L., Sittler E., Mariani F., Schwenn R.J. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations // J. Geophys. Res. V. 86. P. 6673–6684. 1981. https://doi.org/10.1029/JA086iA08p06673
- Burlaga L., Klein L., Sheeley N.R. Jr., Michels D.J., Howard R.A., Koomen M.J., Schwenn R., Rosenbauer H. A magnetic cloud and a coronal mass ejection // Geophys. Res. Lett. V. 9. № 12. P. 1317–1320. 1982. https://doi.org/10.1029/GL009i012p01317
- Cane H.V. CMEs and Forbush decreases // Space Sci. Revs. V. 93. № 1–2. P. 55–77. 2000. https://doi.org/10.1023/A:1026532125747
- Chaddock R.E. Principles and Methods of Statistics (1st ed.). Boston: Houghton Mifflin Company, 471 p. 1925.
- Demouline P. Why Do Temperature and Velocity Have Different Relationships in the Solar Wind and in Interplanetary Coronal Mass Ejections? // Sol. Phys. V. 257. P. 169–184. 2009. https://doi.org/10.1007/s11207-009-9338-5
- Elliott H.A., McComas D.J., Schwadron N.A., Gosling J.T., Skoug R.M., Gloeckler G., Zurbuchen T.H. An improved expected temperature formula for identifying interplanetary coronal mass ejections // J. Geophys. Res. V. 110. № A4. ID A04103. 2005. https://doi.org/10.1029/2004JA010794
- Elliott H.A., Henney C.J., McComas D.J., Smith C.W., Vasquez B.J. Temporal and radial variation of the solar wind temperature-speed relationship // J. Geophys. Res. Space. V. 117. ID A09102. 2012. https://doi.org/10.1029/2011JA017125
- Elliott H.A., McComas D.J., DeForest C.E. Long-term trends in the solar wind proton measurements // Astrophys.J. V. 832. № 1. ID. 66. 2016. https://doi.org/10.3847/0004-637X/832/1/66
- Forbush S.E. On the effects in the cosmic-ray intensity observed during magnetic storms // Phys. Rev. V. 51. P. 1108–1109. 1937. https://doi.org/10.1103/PhysRev.51.1108.3
- Gopalswamy N., Akiyama S., Yashiro S., Mäkelä P. Coronal Mass Ejections from Sunspot and non-Sunspot Regions. In Magnetic Coupling between the Interior and the Atmosphere of the Sun, eds. Hasan S. S. and Rutten R. J., Astrophysics and Space Science Proc., Springer Berlin Heidelberg. P. 289–307. 2010а. https://doi.org/10.1007/978-3-642-02859-5_24
- Gopalswamy N., Xie H., Mäkelä P., Akiyama S., Yashiro S., Kaiser M.L., Howard R.A., Bougeret J.-L. Interplanetary shocks lacking type II radio bursts // Astrophys. J. V. 710. № 2. P. 1111–1126. 2010b. https://doi.org/10.1088/0004-637X/710/2/1111
- Gosling J.T., Pizzo V., Bame S.J. Anomalously low proton temperatures in the solar wind following interplanetary shock waves – Evidence for magnetic bottles? // J. Geophys. Res. V. 78. № 13. P. 2001–2009. 1973. https://doi.org/10.1029/JA078i013p02001
- Gosling J.T. Coronal mass ejections and magnetic flux ropes in interplanetary space // Geophys. Monogr. V. 58. P. 343–364, 1990. https://doi.org/10.1029/GM058p0343
- Huttunen K.E.J., Schwenn R., Bothmer V., Koskinen H.E.J. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23 // Annales Geophysicae. V. 23. № 2. P. 625–641. 2005. https://doi.org/10.5194/angeo-23-625-2005
- Iucci N., Parisi M., Storini M., Villoresi G. Forbush decreases: origin and development in the interplanetary space // Nuovo Cimento C. V. 2. P. 1–52. 1979.
- Kim R.S., Gopalswamy N., Cho K.S., Moon Y.J., Yashiro S. Propagation Characteristics of CMEs associated with Magnetic Clouds and Ejecta // Solar Physics. V. 284. № 1. P.77–88. 2013. https://doi.org/10.1007/s11207-013-0230-y
- King J.H., Papitashvili N.E. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data // J. Geophys. Res. V. 110. I. A2. A02104. 2005. https://doi.org/10.1029/2004JA010649
- Kumar A., Badruddin. Interplanetary coronal mass ejections, associated features, and transient modulation of galactic cosmic rays // Solar Phys. V. 289. P. 2177–2205. 2014. https://doi.org/10.1007/s11207-013-0465-7
- Lockwood J.A. Forbush decreases in the cosmic radiation // Space Sci. Revs. V. 12. № 5. P. 658–715. 1971.
- Lopez R.E., Freeman J.W. The solar wind proton temperature-velocity relationship // J. Geophys. Res. V. 91. P. 1701–1705. 1986. https://doi.org/10.1029/JA091iA02p01701
- Lopez R.E. Solar cycle invariance in solar wind proton temperature relationships // J. Geophys. Res. V. 92. P. 11189–11194. 1987. https://doi.org/10.1029/JA092iA10p11189
- Lynch B.J., Zurbuhen T.H., Fisk L.A., Antiochos S.K. Internal structure of magnetic clouds: Plasma and composition // Journal of Geophysical Research Space Physics. V. 108. № A6. ID 1239. 2003. https://doi.org/10.1029/2002JA009591
- Lynch B.J., Gruesbeck J.R., Zurbuchen T.H., Antiochos S.K. Solar cycle–dependent helicity transport by magnetic clouds // Journal of Geophysical Research. V. 110. № A8. ID A08107. 2005. https://doi.org/10.1029/2005JA011137
- Marubashi K., Lepping R.P. Long-duration magnetic clouds: a comparison of analyses using torus- and cylinder-shaped flux ropes models // Annales Geophysicae. V. 25. № 11. P. 2453–2477. 2007. https://doi.org/10.5194/angeo-25-2453-2007
- Matzka J., Stolle C., Yamazaki Y., Bronkalla O., Morschhauser A. The geomagnetic Kp index and derived indices of geomagnetic activity // Space Weather. V. 19. № 5. Article ID e2020SW002641. 2021. https://doi.org/10.1029/2020SW002641
- Matthaeus W.H., Elliot H.A., McComas D.J. Correlation of speed and temperature in the solar wind // J. Geophys. Res. V. 111. № A10. ID A10103. 2006. https://doi.org/10.1029/2006JA011636
- Melkumyan A.A., Belov A.V., Abunina M.A., Abunin A.A., Eroshenko E.A., Yanke V.G., Oleneva V.A. Solar wind temperature-velocity relationship over the last five solar cycles and Forbush decreases associated with different types of interplanetary disturbance // MNRAS. V. 500. № 3. P. 2786–2797. 2021. https://doi.org/10.1093/mnras/staa3366
- Melkumyan A.A., Belov A.V., Abunina M.A., Shlyk N.S., Abunin A.A., Oleneva V.A., Yanke V.G. Forbush decreases associated with coronal mass ejections from active and non-active regions: statistical comparison // MNRAS. V. 515. № 3. P. 4430–4444. 2022. https://doi.org/10.1093/mnras/stac2017
- Neugebauer M., Snyder C.W. Mariner 2 Observations of the solar wind: 1. Average properties // J. Geophys. Res. V. 71. P. 4469–4484. 1966. https://doi.org/10.1029/JZ071i019p04469
- Neugebauer M., Steinberg J.T., Tokar R.L., Barraclough B.L., Dors E.E., Wiens R.C., Gingerich D.E., Luckey D., Whiteaker D.B. Genesis on-board determination of the solar wind flow regime // Space Sci. Rev. V. 105. P. 661–679. 2003. https://doi.org/10.1023/A:1024478129261
- Richardson I.G., Cane H.V. Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta // J. Geophys. Res. V. 100. № A12. P. 23397–23412. 1995a. https://doi.org/10.1029/95JA02684
- Richardson I.G., Cane H.V. Regions of abnormally low proton temperature as signatures of ejecta in the solar wind and their solar cycle dependence / 24th ICRC. Rome, Italy, 1995. V. 4. P. 868–871. 1995b.
- Richardson I.G. Energetic Particles and Corotating Interaction Regions in the Solar Wind // Space Sci. Rev. V. 111. № 3. P. 267–376. 2004. https://doi.org/10.1023/B:SPAC.0000032689.52830.3e
- Richardson I.G., Cane H.V. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties // Solar Phys. V. 264. № 1. P. 189–237. 2010. https://doi.org/10.1007/s11207-010-9568-6
- Shlyk N.S, Belov A.V., Abunina M.A., Abunin A.A., Oleneva V.A., Yanke V.G. Forbush decreases caused by paired interacting solar wind disturbances // Monthly Notices of the Royal Astronomical Society. V. 511. № 4. P. 5897–5908. 2022. https://doi.org/10.1093/mnras/stac478
- Zhang G., Burlaga L. Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases // J. Geophys. Res. V. 93. № A4. P. 2511–2518. 1988. https://doi.org/10.1029/JA093iA04p02511
Supplementary files
