Models for Short-Term Forecast of Maximum X-Ray Class of Solar Flares Based on Magnetic Energy of Active Regions
- 作者: Zimovets I.V.1, Sharykin I.N.1
-
隶属关系:
- Space Research Institute of the Russian Academy of Sciences
- 期: 卷 64, 编号 5 (2024)
- 页面: 593-607
- 栏目: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/283266
- DOI: https://doi.org/10.31857/S0016794024050011
- EDN: https://elibrary.ru/QRNXMM
- ID: 283266
如何引用文章
详细
The accuracy of the M. Aschwanden’s (2020) model for short-term (24 h) prediction of the maximum X-ray class of solar flares based on the power-law dependence on the energy of potential magnetic field of active regions is checked and assessed. For this purpose, a sample of 275 flares (253 M-class and 22 X-class) in isolated active regions on the solar disk in 2010−2023 is analyzed. Magnetic field extrapolations are made in the nonlinear force-free and potential approximations using the GX Simulator based on photospheric vector magnetograms from the Helioseismic Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO). It is found that in 6% of cases Aschwanden’s model underestimates the predicted maximum flare class relative to the observed one (maximal underestimation by 4.4 times). The accuracy of this model (the average ratio of the observed to predicted maximum flare class) is 0.31 ± 0.47. Four other statistical models are proposed, two of which, like Aschwanden’s model, are based on the power-law dependence of the maximum flare class on the energy of potential magnetic field, and the other two are based on the power-law dependence on the free magnetic energy of active regions. These models give fewer (or no) underestimations of the maximum flare class, but two to three times lower forecast accuracy, ranging from 0.11 to 0.17. Additionally, based on the obtained statistical sample, estimates of the limiting X-ray class of solar flares are made. The five models give different limits ranging from ~X14 to ~X250. The realism of these values and the possibility of refining the models by expanding the sample of events is briefly discussed.
全文:

作者简介
I. Zimovets
Space Research Institute of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: ivanzim@cosmos.ru
俄罗斯联邦, Moscow
I. Sharykin
Space Research Institute of the Russian Academy of Sciences
Email: ivan.sharykin@phystech.edu
俄罗斯联邦, Moscow
参考
- Ишков В.Н. Прогноз солнечных вспышечных явлений: солнечные протонные события // Изв. РАН. Сер. физич. T. 87. № 7. С. 1010–1013. 2023. https://doi.org/10.31857/S0367676523701788
- Нечаева А.Б., Зимовец И.В., Зубик В.С., Шарыкин И.Н. Эволюция характеристик вертикального электрического тока и магнитного поля в активных областях Солнца и их связь с мощными вспышками // Геомагнетизм и аэрономия. Т. 64. № 2. С. 175–198. 2024.
- Прист Э.Р. Солнечная магнитогидродинамика. Москва: Мир, 592 с. 1985.
- Aschwanden M.J. Global energetics of Solar Flares. XI. Flare magnitude predictions of the GOES class // Astrophys. J. V. 897. № 1. ID 16. 2020. https://doi.org/10.3847/1538-4357/ab9630
- Belov A. Properties of solar X-ray flares and proton event forecasting // Adv. Space Res. V. 43. № 4. P. 467−473. 2009. https://doi.org/10.1016/j.asr.2008.08.011
- Bobra M.G., Couvidat S. Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm // Astrophys. J. V. 798. № 2. ID 135. 2015. https://doi.org/10.1088/0004-637X/798/2/135
- Brodrick D., Tingay S., Wieringa M. X-ray magnitude of the 4 November 2003 solar flare inferred from ionospheric attenuation of the galactic radio background // J. Geophys. Res. – Space. V. 110. № 9. ID A09S36. 2005. https://doi.org/10.1029/2004JA010960
- Cliver E.W., Schrijver C.J., Shibata K., Usoskin I.G. Extreme solar events // Living Rev. Sol. Phys. V. 19. № 1. ID 2. 2022. https://doi.org/10.1007/s41116-022-00033-8
- Emslie A.G., Dennis B.R., Shih A.Y., Chamberlin P.C., Mewaldt R.A., Moore C.S., Share G.H., Vourlidas A., Welsch B.T. Global energetics of thirty-eight large solar eruptive events // Astrophys. J. V. 759. № 1. ID 71. 2012. https://doi.org/10.1088/0004-637X/759/1/71
- Fleishman G., Anfinogentov S., Loukitcheva M., Mysh’yakov I., Stupishin A. Casting the coronal magnetic field reconstruction tools in 3D using the MHD Bifrost model // Astrophys. J. V. 839. № 1. ID 30. 2017. https://doi.org/10.3847/1538-4357/aa6840
- Georgoulis M.K., Yardley S.L., Guerra J.A. et al. Prediction of solar energetic events impacting space weather conditions // Adv. Space Res. 2024. (in press). https://doi.org/10.1016/j.asr.2024.02.030
- Guo Y., Cheng X., Ding M.D. Origin and structures of solar eruptions. II. Magnetic modeling // Sci. China Earth Sci. V. 60. № 8. P. 1408−1439. 2017. https://doi.org/10.1007/s11430-017-9081-x
- Guo Y., Ding M.D., Wiegelmann T. 3D magnetic field configuration of the 2006 December 13 flare extrapolated with the optimization method // Astrophys. J. V. 679. № 2. P. 1629−1635. 2008. https://doi.org/10.1086/587684
- Inoue S., Hayashi K., Kusano K. Structure and stability of magnetic fields in solar active region 12192 based on nonlinear force-free field modeling // Astrophys. J. V. 818. № 2. ID 168. 2016. https://doi.org/10.3847/0004-637X/818/2/168
- Katsova M.M., Obridko V.N., Sokoloff D.D., Livshits I.M. Solar and stellar flares: frequency, active regions and stellar dynamo // Astrophys. J. V. 936. № 1. ID 49. 2022. https://doi.org/10.3847/1538-4357/ac85e3
- Mahajan K.K., Lodhi N.K., Upadhayaya A.K. Observations of X-ray and EUV fluxes during X-class solar flares and response of upper ionosphere // J. Geophys. Res. – Space. V. 115. № 12. ID A12330. 2010. https://doi.org/10.1029/2010JA015576
- Muller D., Nicula B., Felix S. et al. JHelioviewer. Time-dependent 3D visualization of solar and heliospheric data // Astron. Astrophys. V. 606. ID A10. 2017. https://doi.org/10.1051/0004-6361/201730893
- Nita G.M., Fleishman G.D., Kuznetsov A.A., Anfinogentov S.A., Stupishin A.G., Kontar E.P., Schonfeld S.J., Klimchuk J.A., Gary D.E. Data-constrained solar modeling with GX Simulator // Astrophys. J. Suppl. S. V. 267. № 1. ID 6. 2023. https://doi.org/10.3847/1538-4365/acd343
- Priest E.R., Forbes T.G. The magnetic nature of solar flares // Astron. Astrophys. Rev. V. 10. № 4. P. 313−377. 2002. https://doi.org/10.1007/s001590100013
- Rudenko G.V., Myshyakov I.I. Analysis of reconstruction methods for nonlinear force-free fields // Sol. Phys. V. 257. № 2. P. 287−304. 2009. https://doi.org/10.1007/s11207-009-9389-7
- Sakurai T. Probability distribution functions of solar and stellar flares // Physics. V. 5. № 1. P. 11−23. 2023. https://doi.org/10.3390/physics5010002
- Scherrer P.H., Schou J., Bush R.I. et al. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) // Sol. Phys. V. 275. № 1−2. P. 207−227. 2012. doi: 10.1007/s11207-011-9834-2
- Sharykin I.N., Zimovets I.V., Myshyakov I.I., Meshalkina N.S. Flare energy release at the magnetic field polarity inversion line during the M1.2 solar flare of 2015 March 15. I. Onset of plasma heating and electron acceleration // Astrophys. J. V. 864. № 2. ID 156. 2018. https://doi.org/10.3847/1538-4357/aada15
- Sharykin I.N., Zimovets I.V., Myshyakov I.I. Flare energy release at the magnetic field polarity inversion line during the M1.2 solar flare of 2015 March 15. II. Investigation of photospheric electric current and magnetic field variations using HMI 135 s vector magnetograms // Astrophys. J. V. 893. № 2. ID 159. 2020. https://doi.org/10.3847/1538-4357/ab84ef
- Shibata K., Isobe H., Hillier A. et al. Can superflares occur on our Sun? // Publ. Astron. Soc. Jpn. V. 65. № 3. ID 49. 2013. https://doi.org/10.1093/pasj/65.3.49
- Sun X., Bobra M.G., Hoeksema J.T., Liu Y., Li Y., Shen C., Couvidat S., Norton A.A., Fisher G.H. Why is the great solar active region 12192 flare-rich but CME-poor? // Astrophys. J. V. 804. № 2. ID L28. 2015. https://doi.org/10.1088/2041-8205/804/2/L28
- Thalmann J.K., Tiwari S.K., Wiegelmann T. Comparison of force-free coronal magnetic field modeling using vector fields from Hinode and Solar Dynamics Observatory // Astrophys. J. V. 769. № 1. ID 59. 2013. https://doi.org/10.1088/0004-637X/769/1/59
- Thalmann J.K., Su Y., Temmer M., Veronig A.M. The confined X-class flares of solar active region 2192 // Astrophys. J. Lett. V. 801. № 2. ID L23. 2015. https://doi.org/10.1088/2041-8205/801/2/L23
- White S.M., Thomas R.J., Schwartz R.A. Updated expressions for determining temperatures and emission measures from GOES soft X-ray measurements // Sol. Phys. V. 227. № 2. P. 231−248. 2005. https://doi.org/10.1007/s11207-005-2445-z
- Wiegelmann T., Sakurai T. Solar force-free magnetic fields // Living Rev. Sol. Phys. V. 9. № 1. ID 5. 2012. https://doi.org/10.12942/lrsp-2012-5
- Zimovets I., Sharykin I., Myshyakov I. Quasi-periodic energy release in a three-ribbon solar flare // Sol. Phys. V. 296. № 12. ID 188. 2021. https://doi.org/10.1007/s11207-021-01936-9
补充文件
