Intensive Substorms During the Main Phase of the Magnetic Storm on March 23-24, 2023
- Authors: Gromova L.I.1, Kleymenova N.G.2, Gromov S.V.1, Kanonidi K.K.1, Petrov V.G.1, Malysheva L.M.2
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
- Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
- Issue: Vol 64, No 6 (2024)
- Pages: 760-770
- Section: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/283261
- DOI: https://doi.org/10.31857/S0016794024060041
- EDN: https://elibrary.ru/QOOTXJ
- ID: 283261
Cite item
Abstract
Here we studied the planetary features of the spatiotemporal distribution of ionospheric electrojets recorded in the substorm onset and in the time on the activity maximum of three very intense substorms (with the AL-index from -1200 nT to -1700 nT) observed during the main phase of the strong magnetic storm on 23−24 March 2023. We analyze the substorms by applying the global maps of the planetary distribution of the high-latitude ionospheric currents, constructed on the basis of the simultaneous magnetic measurements on 66 low-orbit satellites of the AMPERE project, as well as the ground-based magnetograms from the Scandinavian IMAGE profile and mid-latitude IZMIRAN stations located in the same longitudinal region. It was established that the onset of all the studied substorms at the IMAGE meridian was accompanied by the development of a night-time current vortex with a clockwise rotation direction that is an indicator of the downward field-aligned currents increasing. The ground-based mid-latitude observations at the IZMIRAN station network confirmed that the center of the substorm current wedge was located in the night-time sector significantly east of the IMAGE meridian. In the time of the substorm intensity maximum, a similar but more extensive current vortex was observed in the morning sector, that fact is, probably, typical for intense substorms.
Full Text

About the authors
L. I. Gromova
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
Author for correspondence.
Email: gromova@izmiran.ru
Russian Federation, Troitsk
N. G. Kleymenova
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: ngk1935@yandex.ru
Russian Federation, Moscow
S. V. Gromov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
Email: gromova@izmiran.ru
Russian Federation, Troitsk
K. Kh. Kanonidi
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
Email: gromova@izmiran.ru
Russian Federation, Troitsk
V. G. Petrov
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
Email: gromova@izmiran.ru
Russian Federation, Troitsk
L. M. Malysheva
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: ngk1935@yandex.ru
Russian Federation, Moscow
References
- Дэспирак И.В., Клейменова Н.Г., Громова Л.И., Громов С.В., Малышева Л.М. Суперсуббури во время бурь 7–8 сентября 2017 г. // Геомагнетизм и аэрономия. Т. 60. № 3. С. 308‒317. 2020. https://doi.org/10.31857/S0016794020030049
- Дэспирак И.В., Клейменова Н.Г., Любчич А.А., Сецко П.В., Громова Л.И., Вернер Р. Глобальное развитие суперсуббури 28 мая 2011 года. // Геомагнетизм и аэрономия. T. 62. № 3. С. 325–335. 2022а. https://doi.org/10.1134/S0016793222030069
- Дэспирак И.В., Клейменова Н.Г., Громова Л.И., Любчич А.А., Гинева В., Сецко П.В. Пространственные особенности суперсуббури на главной фазе бури 5 апреля 2010 // Изв. РАН. Сер. физ. Т. 86. № 3. С. 249-255. 2022б. https://doi.org/10.3103/S106287382203008X
- Ишков В.Н. Итоги и уроки 24 цикла – первого цикла второй эпохи пониженной солнечной активности // Астрон. журн. Т. 99. № 1. C. 55−69. 2022. https://doi.org/10.31857/S0004629922020050
- Ишков В.Н. Текущий 25 цикл солнечной активности в преддверии фазы максимума // Труды XXVII Всероссийская ежегодная конференция по физике солнца “Солнечная и солнечно-земная физика – 2023”. Санкт-Петербург. С. 139−144. 2023. https://doi.org/10.31725/0552-5829-2023-139-144
- Корнилова Т.А., Корнилов И.А. Пространственно-временная динамика сияний во время главной фазы магнитной бури // Геомагнетизм и аэрономия. Т. 49. № 6. С. 757−767. 2009.
- Akasofu S.-I, Chapman S. The development of the main phase of magnetic storms //J. Geophys. Res. V. 68. P. 125–129. 1963. https://doi.org/10.1029/jz068i001p00125
- Boudouridis A., Zesta E., Lyons L.R., Anderson P.C., Lummerzheim D. Effect of solar wind pressure pulses on the size and strength of the auroral oval // J. Geophys. Res. 2003. V. 108. № A4. P. 8012 – 8027. https://doi.org/10.1029/2002JA009373
- Baumjohann W., Kamide Y., Nakamura R. Substorms, storms and the near-Earth tail //J. Geomagn. Geoelectr. V. 48. I. 2. P. 177−185. 1996. https://doi.org/10.5636/jgg.48.177
- Despirak I.V., Lubchich A.A., Kleimenova N.G., Setsko P.V., Werner R. Supersubstorm on 20 December 2015: Spatial Geomagnetic Effects // Proceedings of the Fourteenth Workshop “Solar Influences on the Magnetosphere, Ionosphere and Atmosphere”. P. 10−15. 2022. https://doi.org/DOI: 10.31401/WS.2022.proc
- Ebihara Y, Tanaka T. Substorm simulation: Formation of westward traveling surge // J. Geophys. Res. Space Physics. V. 120. P.10466–10484. 2015. https://doi/org/10.1002/2015JA021697.
- Feldstein Y.I., Grafe A., Gromova I.I., Popov V.A. Auroral electrojets during geomagnetic storms // J. Geophys. Res. V. 102. P. 14223–14235. 1997. 10.1029/97JA00577' target='_blank'>https://doi: 10.1029/97JA00577
- Gjerloev J.W., Hoffman R.A., Sigwarth J.B., Frank L.A., Baker J.B. Typical auroral substorm: A bifurcated oval. // J. Geophys. Res. V. 113. A03211. 2008. 10.1029/2007JA012431' target='_blank'>https://doi: 10.1029/2007JA012431
- Gjerloev J.W., Hoffman R.A. The large‐scale current system during auroral substorms. // J. Geophys. Res.: Space Physics. V. 119. P. 4591–4606. 2014. https://doi.org/10.1002/2013JA019176
- Gromova L.I., Kleimenova N.G., Despirak I.V., Gromov S.V., Lubchich A.A., Malysheva L.M. Magnetic storm 20 April 2020: substorms in the main phase // ‘Physics of auroral phenomena’, Proceedings of the 45th Annual Seminar. P .16−19. 2022. https://doi.org/10.51981/2588-0039.2022.45
- Hoffman R.A., Gjerloev J.W., Frank L.A., Sigwarth, J.W. Are there optical differences between storm-time substorms and isolated substorms? //Ann. Geophys. V. 28. P. 1183–1198. 2010. https://doi.org/10.5194/angeo-28-1183-2010
- Hsu T.-S., McPherron R.L. The Characteristics of Storm-Time Substorms and Non-Storm Substorms // Fifth International Conference on Substorms. Edited by A. Wilson. ESA SP-443. P. 439−442. 2000.
- Kamide Y., Ahn B.-H., Akasofu S.-I., et al. Global distribution of ionospheric and field-aligned currents during substorms as determined from six IMS meridian chains of magnetometers: initial results //J. Geophys. Res. V. 87. P. 8228–8240. 1982. https://doi.org/10.1029/JA087iA10p08228
- Kepko L., McPherron R.L., Amm O., Apatenkov S., Baumjohann W., Birn J., Lester M., Nakamura R., Pulkkinen T.I., Sergeev V. Substorm current wedge revisited. // Space Sci. Rev. V. 190(1‐4). P. 1–46. 2015. https://doi.org/10.1007/s11214-014-0124-9
- Kisabeth J., Rostoker G. Current flow in auroral loops and surges inferred from ground-based magnetic observations. //J. Geophys. Res. V. 78. P. 5573–5584. 1973. https://doi.org/10.1029/JA078i025p05573
- Lazutin L., Starkov G., Meng C-I., Sibeck D. G., Stadsnes J., Bjordal J., Kan Liou, Kornilova T., Reeves G. Westward traveling surge dynamics and the local structure of an isolated substorm. // Adv. Space Res. V. 28. P. 1623−1629. 2001. https://doi.org/10.1016/S0273-1177(01)00489-6
- McPherron R.L., Russell C.T., Aubry M.P. Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms // J. Geophys. Res. V. 78. № 16. Р. 3131−3149. 1973. https://doi.org/10.1029/JA078i016p03131
- McPherron R.L., Chu X. Relation of the auroral substorm to the substorm current wedge. // Geosci. Lett. V. 3. P. 12. 2016. https://doi.org/10.1186/s40562-016-0044-5
- Ohtani S., Motoba T., Gkioulidou M., Takahashi K., Singer H.J. Spatial development of the dipolarization region in the inner magnetosphere. //J. Geophys. Res.: Space Physics. V. 123. P. 5452–5463. 2018. https://doi.org/10.1029/2018JA025443
- Ohtani S., Motoba T. Formation of beading auroral arcs at substorm onset: implications of its variability into the generation process. //J. Geophys. Res.: Space Physics. V. 128. e2022JA030796. 2023. https://doi.org/10.1029/2022JA030796
- Tighe W.G. and Rostoker G. Characteristics of westward travelling surges during magnetospheric substorms. //Journal of Geophysics - Zeitschrift fuer Geophysik. V. 50. № 1. P. 51−67. 1981.
- Troshichev O.A., Podorozhkina N.A., Sormakov D.A., Janzhura A.S. PC index as a proxy of the solar wind energy that entered into the magnetosphere: Development of magnetic substorms // J. Geophys. Res.:Space Physics. V. 119. P. 6521–6540. 2014. https://doi.org/10.1002/2014JA019940
- Tsurutani B.T., Hajra R., Echer E., Gjerloev J.W. Extremely intense (SML ≤ -2500 nT) substorms: isolated events that are externally triggered? // Ann. Geophys. V. 33. P. 519–524. 2015 https://doi.org/10.5194/angeocom-33-519-2015
Supplementary files
