Long-term trends in the height of the maximum of the Ionospheric F2 layer

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Long-term variations (trends) in the height of the ionospheric F2-layer hmF2 are analyzed based on the data of Moscow and Juliusruh stations. The near-noon LT hours and two winter (January and February) and two summer (June and July) months are considered over a period of 1996–2023. Well pronounced and statistically significant negative trends in hmF2 are obtained both in summer and winter. Overall, the F2-layer height was decreasing during the considered period by 0.5–1 km per year. The “Delta” method developed and published by the authors earlier is applied to the same data. The results confirm a systematic decrease in the hmF2 value during two recent decades. It is found that the F2-layer height is decreasing more rapidly during several recent years than in the previous years.

Full Text

Restricted Access

About the authors

A. D. Danilov

Fedorov Institute of Applied Geophysics

Author for correspondence.
Email: adanilov99@mail.ru
Russian Federation, Moscow

A. V. Konstantinova

Fedorov Institute of Applied Geophysics

Email: adanilov99@mail.ru
Russian Federation, Moscow

N. A. Berbeneva

Lomonosov Moscow State University

Email: adanilov99@mail.ru

Physical Department

Russian Federation, Moscow

References

  1. Данилов А.Д., Бербенева Н.А. Тренды критической частоты слоя F2 в последнее десятилетие // Геомагнетизм и аэрономия. Т. 63. № 2. С. 139–146. 2023. https://doi.org/10.31857/S0016794022600697
  2. Данилов А.Д., Бербенева Н.А. Зависимость foF2 от солнечной активности по данным ионосферных станций северного и южного полушарий // Геомагнетизм и аэрономия. Т. 64. № 2. С. 253–264. 2024.
  3. Данилов А.Д., Константинова А.В. Поведение параметров ионосферного слоя F2 на грани веков. 2. Высота слоя // Геомагнетизм и аэрономия. Т. 53. № 4. C. 486–499. 2013. https://doi.org/10.7868/S0016794013040068
  4. Данилов А.Д., Константинова А.В. Долговременные изменения параметра “дельта foF2” по данным двух европейских ионосферных станций // Геомагнетизм и аэрономия. Т. 57. № 5. С. 623–627. 2017. https://doi.org/10.7868/S0016794017050054
  5. Данилов А.Д., Константинова А.В. Дальнейший анализ трендов foE на станции Juliusruh // Гелиогеофизические исследования. Вып. 19. С. 41–46. 2018.
  6. Данилов А.Д., Константинова А.В. Долговременные вариации параметров средней и верхней атмосферы и ионосферы (обзор) // Геомагнетизм и аэрономия. Т. 60. № 4. С. 411–435. 2020. https://doi.org/10.31857/S0016794020040045
  7. Данилов А.Д., Константинова А.В., Бербенева Н.А. Анализ трендов foF2 до 2022 г. с использованием разных индексов солнечной активности // Гелиогеофизические исследования. Вып. 37. С. 42–54. 2023а. https://doi.org/10.5425/2304-7380_2022_37_42
  8. Данилов А.Д., Константинова А.В., Бербенева Н.А. Детальный анализ суточных вариаций трендов foF2 // Гелиогеофизические исследования. Вып. 39. С. 8–16. 2023б. https://doi.org/10.5425/2304-7380_2023_39_8
  9. Данилов А.Д., Константинова А.В., Бербенева Н.А. Дальнейший детальный анализ зависимости foF2 от солнечной активности // Гелиогеофизические исследования. Вып. 40. С. 68–80. 2023в. https://doi.org/10.5425/2304-7380_2023_40_68
  10. Данилов А.Д., Константинова А.В., Бербенева Н.А. Тренды критической частоты foF2 по данным станций Северного и Южного полушарий. Геомагнетизм и аэрономия. Т. 64. № 3. С. 387–400. 2024.
  11. Bremer J. Long-term trends in the ionospheric E and F1 regions // Ann. Geophysicae. V. 26. № 5. P. 1189–1197. 2008. https://doi.org/10.5194/angeo-26-1189-2008
  12. Danilov A.D., Berbeneva N.A. Statistical analysis of the critical frequency foF2 dependence on various solar activity indices // Adv. Space Res. V. 72. № 6. P. 2351–2361. 2023. https://doi.org/10.1016/j.asr.2023.05.012
  13. De Haro Barbás D.F., Elias A.G., Venchiarutti J.V., Fagre M., Zossi B.S., Jun G.T., Medina F.D. MgII as a solar proxy to filter F2-region ionospheric parameters // Pure Appl. Geophys. V. 178. № 11. P. 4605–4618. 2021. https://doi.org/10.1007/s00024-021-02884-y
  14. Gulyaeva T.L., Arikan F., Sezen U., Poustovalova L.V. Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model // J. Atmos. Sol.-Terr. Phy. V. 172. P. 122−128. 2018. https://doi.org/10.1016/j.jastp.2018.03.025
  15. Laštovička J. Progress in investigating long-term trends in the mesosphere, thermosphere, and ionosphere // Atmos. Chem. Phys. V. 23. № 10. P. 5783–5800. 2023. https://doi.org/10.5194/acp-23-5783-2023
  16. Laštovička J. Dependence of long-term trends in foF2 at middle latitudes on different solar activity proxies // Adv. Space Res. V. 73. № 1. P. 685–689. 2024. https://doi.org/10.1016/j.asr.2023.09.047
  17. Laštovička J., Burešová D. Relationships between foF2 and various solar activity proxies // Space Weather V. 21. № 4. ID e2022SW003359. 2023. https://doi.org/10.1029/2022SW003359
  18. Perna L., Pezzopane M. foF2 vs solar indices for the Rome station: looking for the best general relation which is able to describe the anomalous minimum between cycles 23 and 24 // J. Atmos. Sol.-Terr. Phy. V. 148. P. 13–21. 2016. https://doi.org/10.1016/j.jastp.2016.08.003
  19. Shimazaki T. World-wide daily variations in the height of the maximum electron density in the ionospheric F2 layer // J. Radio Res. Lab. V. 2. № 7. P. 85–97. 1955.
  20. Yue X., Hu L., Wei Y., Wan W., Ning B. Ionospheric trend over Wuhan during 1947–2017: Comparison between simulation and observation // J. Geophys. Res. – Space. V. 123. № 2. P. 1396–1409. 2018. https://doi.org/10.1002/2017JA024675

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Change in ΔhmF2 over time in January for Moscow station.

Download (410KB)
3. Fig. 2. Change in ΔhmF2 over time in February for Moscow station.

Download (426KB)
4. Fig. 3. Change in ΔhmF2 over time in June for Moscow station.

Download (368KB)
5. Fig. 4. Change in ΔhmF2 over time in July for Moscow station.

Download (407KB)
6. Fig. 5. Examples of changes in ΔhmF2 over time in January for Juliusruh station.

Download (210KB)
7. Fig. 6. Examples of changes in ΔhmF2 over time in June for Juliusruh station.

Download (223KB)
8. Fig. 7. Examples of the dependence of hmF2 on SA indices for different time intervals in January (Moscow station).

Download (374KB)
9. Fig. 8. Examples of the dependence of hmF2 on SA indices for different time intervals in February (Moscow station).

Download (402KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».