Кинематика вспышечных лент при эрупции солнечных протуберанцев

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Вспышечные ленты, образующиеся в солнечных двухленточных вспышках после эрупций протуберанцев, расходятся в противоположные стороны от линии раздела полярностей фотосферного продольного магнитного поля, резко замедляясь со временем и удалением от этой линии. Приведены примеры таких событий и продемонстрирована кинематика вспышечных лент. Сопоставление положения лент с распределением фотосферного магнитного поля показывает, что замедление расхождения лент происходит при их попадании в область сильного продольного поля. Простая модель эрупции протуберанца иллюстрирует кинематические особенности движения лент и связь с источниками коронального магнитного поля в фотосфере.

Полный текст

Доступ закрыт

Об авторах

Б. П. Филиппов

Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН (ИЗМИРАН)

Автор, ответственный за переписку.
Email: bfilip@izmiran.ru
Россия, Москва, Троицк

Список литературы

  1. Прист Э., Форбс Т. Магнитное пересоединение. Пер. с англ. ред. В.Д. Кузнецов, А.Г. Франк. М: Физматлит, 592 с. 2005.
  2. Carmichael H. A process for flares / The Physics of Solar Flares / Proceedings of the AAS-NASA Symposium. Greenbelt, MD. October 28−30, 1963. Ed. Hess W.N. SP-50 of NASA Special Publications, Washington: NASA Scientific and Technical Information Division. P. 451−456. 1964.
  3. Carrington R.C. Description of a singular appearance seen in the Sun on September 1, 1859 // Mon. Not. R. Astron. Soc. V. 20. P. 13−15. 1859.
  4. Ding M.D., Chen Q.R., Li J.P., Chen P.F. Hα and hard X-ray observations of a two-ribbon flare associated with a filament eruption // Astrophys. J. V. 598. № 1. P. 683−688. 2003. https://doi.org/10.1086/378877
  5. Durant C.J. Polar magnetic fields – filaments and the zero-flux contour // Solar Phys. V. 211. № 1−2. P. 83−102. 2002. https://doi.org/10.1023/A:1022501505915
  6. Filippov B. Electric current equilibrium in the corona // Solar Phys. V. 283. № 2. P. 401−411. 2013. https://doi.org/10.1007/s11207-013-0253-4
  7. Filippov B. Rising of a magnetic null point in the wake of an erupting flux rope // Mon. Not. R. Astron. Soc. V. 512. № 1. P. 1357–1364. 2022. https://doi.org/10.1093/mnras/stac575
  8. Fletcher L., Dennis B.R., Hudson H.S. et al. An observational overview of solar flares // Space Sci. Rev. V. 159. № 1−4. ID 19. 2011. https://doi.org/10.1007/s11214-010-9701-8
  9. Forbes T.G., Priest E.R. Reconnection in solar flares / Solar Terrestrial Physics: Present and Future. Eds. Butler D.M., Papadopoulous K. Greenbelt, MD: NASA Reference Publication 1120. P. 1−35. 1984.
  10. Forbes T.G., Lin J. What can we learn about reconnection from coronal mass ejections? // J. Atmos. Sol.-Terr. Phy. V. 62. № 16. P. 1499−1507. 2000. https://doi.org/10.1016/S1364-6826(00)00083-3
  11. Forbes T.G., Seaton D.B., Reeves K.K. Reconnection in the post-impulsive phase of solar flares // Astrophys. J. V. 858. № 2. ID 70. 2018. https://doi.org/10.3847/1538-4357/aabad4
  12. Hinterreiter J., Veronig A.M., Thalmann J.K., Tschernitz J., Pötzi W. Statistical properties of ribbon evolution and reconnection electric fields in eruptive and confined flares // Solar Phys. V. 293. № 3. ID 38. 2018. https://doi.org/10.1007/s11207-018-1253-1
  13. Hirayama T. Theoretical model of flares and prominences. I: Evaporating flare model // Solar Phys. V. 34. № 2. P. 323−338. 1974. https://doi.org/10.1007/BF00153671
  14. Kopp R.A., Pneuman G.W. Magnetic reconnection in the corona and the loop prominence phenomenon // Solar Phys. V. 50. № 1. P. 85−98. 1976. https://doi.org/10.1007/BF00206193
  15. Kuperus M., Raadu M.A. The support of prominences formed in neutral sheets // Astron. Astrophys. V. 31. P. 189−193. 1974.
  16. Lemen J.R., Title A.M., Akin D.J., et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) // Solar Phys. V. 275. № 1−2. P. 17−40. 2012. https://doi.org/10.1007/s11207-011-9776-8
  17. Li L., Zhang J. On the brightening propagation of post-flare loops observed by TRACE // Astrophys. J. V. 690. № 1. P. 347−357. 2009. https://doi.org/10.1088/0004-637X/690/1/347
  18. Lin J., Forbes T.G., Isenberg P.A., Démoulin P. The effect of curvature on flux-rope models of coronal mass ejections // Astrophys. J. V. 504. № 2. P. 1006−1019. 1998. https://doi.org/10.1086/306108
  19. Lin J., Soon W., Baliunas S.L. Theories of solar eruptions: a review // New Astron. Rev. V. 47. № 2. P. 53−84. 2003. https://doi.org/10.1016/S1387-6473(02)00271-3
  20. Martin S.F. Conditions for the formation and maintenance of filaments (invited review) // Solar Phys. V. 182. № 1. P. 107−137. 1998. https://doi.org/10.1023/A:1005026814076
  21. McIntosh P.S. Solar magnetic fields derived from hydrogen alpha filtergrams // Rev. Geophys. Space Phys. V. 10. № 3. P. 837−846. 1972. https://doi.org/10.1029/RG010i003p00837
  22. Priest E.R., Forbes T.G. Magnetic field evolution during prominence eruptions and two-ribbon flares // Solar Phys. V. 126. № 2. P. 319−350. 1990. https://doi.org/10.1007/BF00153054
  23. Priest E.R., Forbes T.G. The magnetic nature of solar flares // Astron. Astrophys. Rev. V. 10. № 4. P. 313−377. 2002. https://doi.org/10.1007/s001590100013
  24. Qiu J., Lee J., Gary D.E., Wang H. Motion of flare footpoint emission and inferred electric field in reconnecting current sheets // Astrophys. J. V. 565. № 2. P. 1335−1347. 2002. https://doi.org/10.1086/324706
  25. Qiu J., Wang H., Cheng C.Z., Gary, D.E. Magnetic reconnection and mass acceleration in flare–coronal mass ejection events // Astrophys. J. V. 604. № 2. P. 900−905. 2004. https://doi.org/10.1086/382122
  26. Schou J., Scherrer P.H., Bush R.I. et al. Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO) // Solar Phys. V. 275. № 1–2. P. 229–259. 2012. https://doi.org/10.1007/s11207-011-9842-2
  27. Snodgrass H.B., Kress J.M., Wilson P.R. Observations of the polar magnetic fields during the polarity reversals of cycle 22 // Solar Phys. V. 191. № 1. P. 1−19. 2000. https://doi.org/10.1023/A:1005279508869
  28. Sterling A.C., Moore R.L. Slow-rise and fast-rise phases of an erupting solar filament, and flare emission onset // Astrophys. J. V. 630. № 2. P. 1148−1159. 2005. https://doi.org/10.1086/432044
  29. Sturrock P.A. Model of the high-energy phase of solar flares // Nature. V. 211. № 5050. P. 695−697. 1966. https://doi.org/10.1038/211695a0
  30. Švestka Z. On the varieties of solar flares / The Lower Atmosphere of Solar Flares. Proceedings of the Solar Maximum Mission Symposium. Sunspot, NM, August 20−24, 1985. Eds. Neidig D.F., Machado M.E. Sunspot, NM: National Solar Observatory. P. 332–355. 1986.
  31. Van Tend W., Kuperus M. The development of coronal electric current system in active regions and their relation to filaments and flares // Solar Phys. V. 59. № 1. P. 115–127. 1978. https://doi.org/10.1007/BF00154935
  32. Wang H., Qiu J., Jing J., Zhang H. Study of ribbon separation of a flare associated with a quiescent filament eruption // Astrophys. J. V. 593. № 1. P. 564−570. 2003. https://doi.org/10.1086/376360
  33. Zhang Q.M., Yang S.H., Li T., Hou Y.J., Li Y. Fast degradation of the circular flare ribbon on 2014 August 24 // Astron. Astrophys. V. 636. ID L11. 2020. https://doi.org/10.1051/0004-6361/202038072

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Движение вспышечных лент. Левая колонка – изображения вспышечных лент на фильтрограммах: (а) – в линии Hα 24 июня 1999 г. (с разрешения Медонской обсерватории), (г) – в линии Hα 18 ноября 2003 г. (с разрешения Солнечной обсерватории Канцельхойе), (ж) – в канале 304 Å SDO/AIA 29 сентября 2013 г. (с разрешения консорциума SDO/AIA), (к) – в канале 304 Å SDO/AIA 15 июля 2022 г. (с разрешения консорциума SDO/AIA). Ленты обозначены символами R1 – R8. Средняя колонка – перемещение вспышечных лент вдоль линий A–B, показанных на левых панелях. Темные полоски с большим наклоном на панелях з и л соответствуют быстрому перемещению эруптивных волокон (EP). Правая колонка – графики зависимости скорости движения лент от времени. Штриховые линии соответствуют лентам, расположенным северо-западнее (с разрешения консорциума SDO/AIA).

Скачать (497KB)
3. Рис. 2. Положение вспышечных лент относительно фотосферного магнитного поля. (а) и (б) соответствуют панелям (ж) и (к) на рис. 1, (в) – фильтрограмма в линии Hα вспышки, проходящей через тень солнечных пятен (Большой внезатменный коронограф ГАС ГАО). (С разрешения консорциумов SDO/AIA, SDO/HMI и ГАС ГАО).

Скачать (186KB)
4. Рис. 3. (а) – силовые линии магнитного поля прямого электрического тока I во внешнем поле двух зарядов q и –q и последовательность силовых линий, исходящих из нулевой точки N к лентам S в хромосфере при подъеме тока (б).

Скачать (149KB)
5. Рис. 4. Зависимость от времени высоты h эруптирующего магнитного жгута, нулевой точки zn и полурасстояния R между вспышечными лентами (а) и скорость изменения координат этих величин v, vzn и vs соответственно (б). Штриховой линией с коротким штрихом показан профиль изменения индукционного электрического поля в нулевой точке, вертикальная штриховая линия с длинным штрихом показывает момент возрастания индукционного поля до половины максимального значения.

Скачать (125KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».