Study of sudden magnetic storm commencement from observations with second time resolution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents the results of a studying detection of the sudden commencement (SC) and main impulse (MI) of a magnetic storm as a function of the geographic coordinates of magnetic observatories and Universal Time, using modern data with second time resolution. The analysis was carried out for two events in which an interplanetary shock wave impacting the magnetosphere was associated with interplanetary coronal mass ejections (CMEs) with sources in different hemispheres of the Sun. The authors propose an approach to determine the time points of SC and MI detection. It is concluded that the SC and MI detection times may differ by several seconds to more than a minute at magnetic observatories located at different geographic latitudes and longitudes. For the studied events, the graphs of SC and MI detection as functions of the geographic coordinates of magnetic observatories and Universal Time revealed trends according to which, on average, the higher station the latitude, the later SC and MI are detected at the station.

Full Text

Restricted Access

About the authors

Iu. S. Zagainova

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences

Author for correspondence.
Email: yuliazganova@mail.ru
Russian Federation, Moscow, Troitsk

S. V. Gromov

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences

Email: yuliazganova@mail.ru
Russian Federation, Moscow, Troitsk

L. I. Gromova

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences

Email: yuliazganova@mail.ru
Russian Federation, Moscow, Troitsk

V. G. Fainshtein

Institute of Solar–Terrestrial Physics, Siberian Branch, Russian Academy of Sciences

Email: yuliazagainova@mail.ru
Russian Federation, Irkutsk

References

  1. Акасофу С.И., Чепмен С. Солнечно-земная физика. 2 часть. Перевод с англ. М.: Изд-во «Мир», 512 с. 1975.
  2. Ермолаев Ю.И., Николаева Н.С., Лодкина И.Г., Ермолаев М.Ю. Каталог крупномасштабных явлений солнечного ветра для периода 1976–2000 гг. // Космич. исслед. Т. 47. № 2. С. 99–113. 2009. https://doi.org/10.1134/S0010952509020014
  3. Пархомов В.А., Бородкова Н.Л., Яхнин А.Г., Суворова А.В., Довбня Б.В., Пашинин А.Ю., Козелов Б.В. Глобальный импульсный всплеск геомагнитных пульсаций в частотном диапазоне 0.2–5 Гц, как предвестник внезапного начала геомагнитной бури Святого Патрика 17 марта 2015 г. // Космич. исслед. Т. 55. № 5. С. 323–336. 2017. https://doi.org/10.7868/S0023420617050016
  4. Пархомов В.А., Бородкова Н.Л., Яхнин А.Г. и др. Два типа отклика магнитосферы в геомагнитных пульсациях Psc на взаимодействие с межпланетными ударными волнами. // Солнечно-земная физика. Т. 4. № 3. С. 68–83. 2018. https://doi.org/10.12737/szf-43201808
  5. Пилипенко В.А., Браво М., Романова Н.В., Козырева О.В., Самсонов С.Н., Сахаров Я.А. Геомагнитный и ионосферный отклики на межпланетную ударную волну 17 марта 2015 г. // Физика земли. № 5. C. 61‒80. 2018. https://doi.org/10.1134/S1069351318050129
  6. Araki T. A physical model of the geomagnetic sudden commencement // Geophysical Monograph, V. 81. P. 183–200. 1994. https://doi.org/10.1029/GM081p0183
  7. Beland J., Small K. Space weather effects on power transmission systems: The cases of Hydro-Quebec and Transpower New Zealand Ltd. Effects of Space Weather on Technology Infrastructure, Kluwer, Dordrecht, Netherlands / ed. Eaglis I.A. P. 287–299. 2004.
  8. Brueckner G.E., Howard R.A., Koomen M.J., Korendyke C.M. The large angle spectroscopic coronagraph (LASCO) // Solar Physics. 162. P. 357. 1995.
  9. Chapman S., Bartels J. Geomagnetism, Vol. I: Geomagnetic and Related Phenomena. London: Oxford Univ. Press, 1940a.
  10. Chapman S., Bartels J. Geomagnetism, Vol. II: Analysis of the Data, and Physical Theories. London: Oxford Univ. Press, 1940b.
  11. Burlaga L.F. and Ogivile K.W., Causes of sudden commencements and sudden impulses // J. Geophys. Res. V. 74. P. 2815. 1969.
  12. Curto J.J., Araki T., Alberca L.F. Evolution of the concept of Sudden Storm Commencements and their operative identification // Earth Planets Space. V. 59. i–xii. 2007a. https://doi.org/10.1186/BF03352059
  13. Curto J.J., Cardús J.O., Alberca L.F, Blanch E. Milestones of the IAGA International Service of Rapid Magnetic Variations and its contribution to geomagnetic field knowledge // Earth, Planets and Space. V. 59. P. 463–471. 2007b.
  14. Domingo V., Fleck B., Poland A.I. The SOHO Mission: an Overview // Solar Phys. 162(1-2). P. 1. 1995.
  15. Fainshtein V.G., Ivanov E.V. Relationship between CME Parameters and Large-Scale Structure of Solar Magnetic Fields // Sun and Geosphere. V. 5. N. 1. P. 28‒33. 2010.
  16. Ferraro V.C.A., Parkinson W.C., and Unthank H.W. Sudden commencements and sudden impulses in geomagnetism, Cheltenham, Tucson, San Juan, Honolulu, Huancayo and Watheroo // J. Geophys. Res. V. 56. P. 177–195. 1951.
  17. Gerard V.B. The Propagation of World-Wide Sudden Commencements of Magnetic Storms// Journal of Geophysical Research. V. 64. Issue 6. P. 593‒596. 1959.
  18. Gopalswamy N., Yashiro S., Michalek G., Stenborg G., Xie G., Mäkelä P., Vourlidas A. A Catalog of Halo Coronal Mass Ejections from SOHO // Earth Moon Planet. V. 104. P. 7–16. 2010.
  19. Hundhausen A.J. Coronal expansion and solar wind. Berlin: Springer-Verlag Heidelberg New York, 1972.
  20. Kim S.-I., Kim K.-H., Kwon H.-J., et al. SC-associated electric field variations in the magnetosphere and ionospheric convective flows // J. Geophys. Res.: Space Physics. V. 122. P. 11,044–11,057. 2017. https://doi.org/10.1002/2017JA024611
  21. Lam M.M., Rodger A.S. A case study test of Araki’s physical model of geomagnetic sudden commencement // Journal of Geophysical Research. V. 106. Issue A7. P. 13135‒13144. 2001. https://doi.org/10.1029/2000JA900134
  22. Mayaud P. Analysis of storm sudden commencements for the years 1868–1967 // J. Geophys. Res. V. 80. № 1. P. 111–122. 1975.
  23. Nishida A. Geomagnetic diagnosis of the magnetosphere. Berlin: Springer-Verlag New-York-Hedelberg. 1978.
  24. Nishimura Y., Kikuchi T., Ebihara Y., Yoshikawa A., Imajo S., Li W., Utada H. Evolution of the current system during solar wind pressure pulses based on aurora and magnetometer observations // Earth, Planets and Space. V. 68. P. 144. 2016. https://doi.org/10.1186/s40623-016-0517-y
  25. Parkhomov V.A. Fine structure of the preliminary impulse of a sudden storm commencement // Geomagnetizm i Aeronomiia (ISSN 0016-7940), vol. 25, May-June 1985, p. 420‒424. In Russian. 1985.
  26. Russell C.T., Ginskey M., Petrinec S.M. Sudden impulses at low latitudestations: Steady state response for southward interplanetary magneticfield // J. Geophys. Res.V. 99 (A7). P. 13403–1 3408. 1994. https://doi.org/10.1029/94JA00549
  27. Samsonov A.A., Sibeck D.G., Chen S., Singer H.J., Biernat H.K., Zolotova N. An event of interplanetary shock - magnetosphere interaction: Comparison between spacecraft observations and MHD modeling. American Geophysical Union, Fall Meeting 2010, abstract id.SM13B-1799. 2010.
  28. Sato T. Sudden commencement of geomagnetic storms in high latitudes // Rep. Ionosph. Space Res. Japan. V. 15. P. 215. 1961.
  29. Selvakumaran R., Veenadhari B., Ebihara Y., Kumar S., Prasad D.S.V.V.D. The role of interplanetary shock orientation on SC/SI rise time and geoeffectiveness // Advances in Space Research. V. 59. N. 5. P. 1425–1438. 2017. https://doi.org/10.1016/j.asr.2016.12.010
  30. Sun T.R., Wang C., Li H., Guo X.C. Nightside geosynchronous magnetic field response to interplanetary shocks: Model results // J. Geophys. Res. V. 116. A04216. 2011. https://doi.org/10.1029/2010JA016074
  31. Sun T.R., Wang C., Zhang J.J., Pilipenko V.A., Wang Y., Wang J.Y. The chain response of the magnetospheric and ground magnetic field to interplanetary shocks // J. Geophys. Res. V. 120. P. 157–165. 2015. https://doi.org/10.1002/2014JA020754
  32. Wang C., Li C.X., Huang Z.H., and Richardson J.D. Effect of interplanetary shock strengths and orientations on storm sudden commencement rise times // Geophys.Res. Lett. V. 33. P.L14104. 2006. https://doi.org/10.1029/2006GL025966
  33. Wang C., Li H., Richardson J.D., and Kan J.R. Interplanetary shock characteristics and associated geosynchronous magnetic field variations estimated from sudden impulses observed on the ground // J. Geophys. Res. V. 115. P. A09215. 2010. https://doi.org/10.1029/2009JA014833
  34. Williams V.L. The simultaneity of sudden commencements of magnetic storms // J. Geophys. Res. V. 65. N. 1. P. 85–92. 1960.
  35. Wilson C.R., Sugiura M. Hydromagnetic Interpretation of Sudden Commencements of Magnetic Storms? // Journal of Geophysical Research. V. 66. Iissue 12. P. 4097‒4111. 1961.
  36. Yamamoto M., Maeda H. The simultaneity of geomagnetic sudden impulses // J. Atmosp. Terr. Phys. V. 22. P. 212–215. 1960.
  37. Yue C., Zong Q.G., Zhang H., Wang Y.F., Yuan C.J., Pu Z.Y., Fu S.Y., Lui A.T.Y., Yang B., and Wang C.R. Geomagnetic activity triggered by interplanetary shocks // J. Geophys. Res. V. 115. P. A00I05. 2010. https://doi.org/10.1029/2010JA0115356

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Examples of observation data of the H-component of the geomagnetic field at the low-latitude Honolulu station (HON) with minute (thin solid line) and second (dashed line) resolution for estimating the onset of SSC: in the upper panel – for the event of June 22, 2015 at 18:33 UT, in the lower panel – July 16, 2017 at 05:59 UT.

Download (106KB)
3. Fig. 2. Dependence of the normalized horizontal H-component of the geomagnetic field Hn(t), the approximating function ym(t) and the partial derivative Ad(t) of Hn(t) over time for the AMS station. The times of the start of registration SC tSC and MI tMI are indicated.

Download (90KB)
4. Fig. 3. An example of an SC event including a preliminary return pulse PI, based on observations by the HRN magnetic observatory. The dependence of the normalized horizontal H-component of the geomagnetic field Hn(t) and the partial derivative Ad(t) on Hn(t) is shown. The times of the start of SC registration tSC, the preliminary return pulse PI tPI, and the main pulse MI tMI are indicated.

Download (85KB)
5. Fig. 4. Conditions in the interplanetary magnetic field (IMF) and solar wind, as well as geomagnetic activity on Earth for June 22, 2015. From top to bottom: variations in the field modulus |B| and Bz(GSE) field components, solar wind (velocity V, proton density Np, proton temperature T) and the storm activity index on Earth SYM/H (a one-minute analogue of the Dst index). The arrow shows the moment when SSC (SI) were observed, caused by the arrival of an interplanetary shock wave (CME) to Earth with a source of formation in the Northern Hemisphere of the Sun on June 21, 2015, 02:36 UT.

Download (210KB)
6. Fig. 5. The same as in Fig. 4, but for July 16, 2017, when SSCs were observed on the Earth's surface, caused by the arrival of an interplanetary shock wave CME with a source of formation in the Southern Hemisphere of the Sun on July 14, 2017 at 01:25 UT.

Download (199KB)
7. Fig. 6. SC registration (a) – as a function of geographic latitude φ and longitude relative to the “noon line” λ; (b) – geographic latitude φ (a) – Universal Time (t – time in seconds, counted from the start of registration at the first station from the KOU list; tUT – Universal Time in seconds from the beginning of the day) for the event of June 22, 2015 (CME of June 21, 2015). In panel (b) the areas of λ values ​​corresponding to stations on the night side of the Earth are shaded.

Download (164KB)
8. Fig. 7. Same as in Fig. 6, but for the start of MI registration.

Download (162KB)
9. Fig. 8. SC registration as a function of geographic latitude φ (a) and longitude relative to the “noon line” λ (b) and time (t is the time in seconds counted from the start of registration at the first station from the AMS list; tUT is Universal Time in seconds from the beginning of the day) for the event of July 16, 2017 (CME of July 14, 2017). In the figure (b), the areas of λ values ​​corresponding to stations on the night side of the Earth are shaded.

Download (177KB)
10. Fig. 9. The same as in Fig. 8, but for the start of MI registration.

Download (167KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».