Ionospheric features of dayside polar cusp precipitation under the northward IMF

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The geophysical processes in the dayside polar cusp on December 22, 2003 under the northern orientation of the interplanetary magnetic field (IMF), relatively high speed and low density of the solar wind by using the ground-based optical observations on Spitsbergen and DMSP F16 spacecraft observations were examined. A comparison of spacecraft and ground-based observations shows that soft electron precipitation in the cusp region determine the region of the auroral luminosity in the (OI) 630.0 nm emission. The peculiarity of the event under consideration is the observation of a bright rayed auroral arc bordering the dayside cusp from its polar edge. The results of observations of the low-altitude DMSP F16 spacecraft during its pass over the rayed arc were analyzed. Explanations of the observed phenomena are proposed based on the analysis of changes in the spectra of precipitating electrons and the formation of an electron beam by a field-aligned electric field.

Full Text

Restricted Access

About the authors

V. G. Vorobjev

Polar Geophysical Institute

Author for correspondence.
Email: vorobjev@pgia.ru
Russian Federation, Apatity, Murmansk Region

O. I. Yagodkina

Polar Geophysical Institute

Email: oksana41@mail.ru
Russian Federation, Apatity, Murmansk Region

E. E. Antonova

Skobeltsyn Institute of Nuclear Physics, Moscow State University; Space Research Institute Russian Academy of Science

Email: elizaveta.antonova@gmail.com
Russian Federation, Moscow; Moscow

References

  1. Антонова Е.Е. Об образовании продольной разности потенциалов, изотропных и коллимированных потоков электронов в вечернем секторе авроральной магнитосферы // Геомагнетизм и аэрономия. Т. 19. № 6. С. 1064‒1069. 1979.
  2. Антонова Е.Е., И.П. Кирпичев, Рязанцева М.О., Марьин Б.В., Пулинец М.С., Знаткова С.С., Степанова М.В. Магнитосферная суббуря и дискретные дуги полярного сияния // Вестн. МГУ. Сер. 3. Физика, астрономия. Т. 67. № 6. C. 31‒38. 2012.
  3. Воробьев В.Г., Ягодкина О.И. Особенности структуры высыпаний дневного полярного каспа при северном межпланетном магнитном поле // Изв. РАН. Сер. физ. Т. 86. № 12. С. 1804‒1809. 2022. https://doi.org/10.31857/S0367676522120304
  4. Воробьев В.Г., Ягодкина О.И., Антонова Е.Е., Кирпичев И.П. Широтная структура высыпаний в области дневного полярного каспа // Геомагнетизм и аэрономия. Т. 63. № 6. С. 736‒750. 2023. https://doi.org/ 10.31857/S0016794023600448
  5. Дашкевич Ж.В., Иванов В.Е., Козелов Б.В. Исследование лучистых структур в полярных сияниях триангуляционными методами 2. Энергетические спектры высыпающихся электронов // Космич. исслед. Т. 59. № 5. С. 355–360. 2021. https://doi.org/10.31857/S0023420621050034
  6. Козелов Б.В., Дашкевич Ж.В., Иванов В.Е. Исследование лучистых структур в полярных сияниях триангуляционными методами: 1. Высотный профиль объемной интенсивности свечения // Космич. исслед. Т. 59. № 4. С. 267‒274. 2021. https://doi.org/10.31857/S002342062104
  7. Корнилов И.А., Корнилов О.И. Использование методов улучшения изображений для обработки авроральных телевизионных данных // В книге “Техника и методика геофизического эксперимента”. Апатиты. С. 86‒91. 2003.
  8. Фельдштейн Я.И., Шевнина Н.Ф., Лукина Л.В. Сияния в магнитно-спокойные и магнитно-возмущенные периоды // Геомагнетизм и аэрономия. Т. 6. № 2. С. 312‒321. 1966.
  9. Anderson B.J., Korth H., Waters C.L., Green D.L., Stauning P. Statistical Birkeland current distributions from magnetic field observations by the Iridium constellation // Annales Geophysicae. V. 26. No. 3. P. 671–687. 2008. https://doi.org/10.5194/angeo-26-671-2008
  10. Antonova E.E. The results of INTERBALL/Tail observations, the innermagnetosphere substorm onset and particle acceleration // Adv. Space Res. V. 30. No. 7. P. 1671‒1676. 2002. https://doi.org/10.1016/S0273-1177(02)00434-9
  11. Antonova E.E. From physics of polar aurora to changes of the fundamental approaches to the physics of the magnetospheric processes // In Generation-to-generation communications in space physics. Ed.
  12. Borovsky J.E., Grigorenko E.E., Chau J.L., Miyoshi Y., Usanova M., De Nolfo G.A., Greco A., Partamies N. Lausanne: Frontiers Media SA. ISSN 1664-1714, ISBN 978-2-8325-2553-1. June 2023. P. 138‒144. 2023. https://doi.org/10.3389/978-2-8325-2553-1
  13. Baker K.B., Wing S. A new magnetic coordinate system for conjugate studies at high latitudes // J. Geophys. Res. V. 94. No. A7. P. 9139‒9144. 1989. https://doi.org/10.1029/JA094iA07p09139
  14. Ergun R.E., et al. FAST satellite observations of electric field structures in the auroral zone // Geophys. Res. Lett. V. 25. No. 12. P. 2025‒2028. 1998. https://doi.org/ 10.1029/98GL00635
  15. Fear R. The northward IMF magnetosphere // In “Magnetospheres in the solar system”. P. 293–309. 2021. https://doi.org/10.1002/9781119815624.ch19
  16. Frank L.A. Plasma in the Earth’s polar magnetosphere // J. Geophys. Res. V. 76. No. 22. P. 5202‒5219. 1971. https://doi.org/10.1029/JA076i022p05202
  17. Fuselier S.A., Trattner K.J., Petrinec S.M. Cusp observations of high- and low-latitude reconnection for northward interplanetary magnetic field // J. Geophys. Res. V. 105. No. A1. P. 253‒266. 2000. https://doi.org/10.1029/1999JA900422
  18. Heikkila W.J., Winningham J.D. Penetration of magnetosheath plasma to low altitudes through the dayside magnetospheric cusps // J. Geophys. Res. V. 76. No. 4. P. 883‒891. 1971. https://doi.org/10.1029/JA076i004p00883
  19. Hosokawa K., Kullen A., Milan S., Reidy J., Zou Y., Frey H., Maggiolo R., Fear R. Aurora in the polar cap: A review // Space Sci. Rev. V. 216. No. 1. 2020. https://doi.org/10.1007/s11214-020-0637-3
  20. Kirpichev I.P., Antonova E.E., Stepanova M.V. On the relationship between regions of large-scale field-aligned currents and regions of plateau in plasma pressure observed in the equatorial plane of the Earth’s magnetosphere // Geophys. Res. Let. V. 50. No. 18. e2023GL105190. 2023. https://doi.org/10.1029/2023GL105190
  21. Lavraud B., Fedorov A., Budnik E, Grigoriev A., Cargill P.J., Dunlop M.W. et al. Cluster survey of the high-altitude cusp properties: A three-year statistical study //Ann. Geophys. V. 22. No. 8. P. 3009‒3019. 2004. https://doi.org/10.5194/angeo-22-3009-2004
  22. Milan S.E., Mooney M.K., Bower G.E., Taylor M.G.G.T., Paxton L.J., Dandouras I., Fazakerley A.N., Carr C.M., Andrson B.J., Vimes S.K. The association of cusp-aligned arcs with plasma in the magnetotail implies a closed magnetosphere // J. Geophys. Res. V. 128. No. 7. 2023. https://doi.org/10.1029/2023JA031419
  23. Newell P.T., Meng C.-I. The cusp and the cleft/boundary layer: low-altitude identification and statistical local time variation // J. Geophys. Res. V. 93. No. A12. P. 14549‒14556. 1988. https://doi.org/10.1029/JA093iA12p14549
  24. Newell P.T., Meng C.-I., Sibeck D.G., Lepping R. Some low-altitude cusp dependence on interplanetary magnetic field // J. Geophys. Res. V. 94. P. 8921‒8927. 1989. https://doi.org/10.1029/JA094iA07p08921
  25. Newell P.T., Meng C.-I. Ionospheric projections of magnetospheric regions under low and high solar wind pressure conditions // J. Geophys. Res. V. 99. No. A1. P. 273-286. 1994. https://doi.org/10.1029/93JA02273
  26. Newell P.T., Sotirelis T., Wing S. Diffuse, monoenergetic, and broadband aurora: The global precipitation budget // J. Geophys. Res. V. 114. No. A9. 2009. https://doi.org/ 10.1029/2009JA014326
  27. Pitout F., Bogdanova Y.V. The polar cusp seen by Cluster // J. Geophys. Res. V. 126. No. 9. 2021. https://doi.org/ 10.1029/2021JA029582
  28. Stepanova M.V., Antonova E.E., Bosqued J.M., Kovrazhkin R.A., Aubel K.R. Asymmetry of auroral electron precipitations and its relationship to the substorm expansion phase onset // J. Geophys. Res. V. 107. No. A7. 2002. https://doi.org/10.1029/2001JA003503
  29. Stepanova M., Antonova E.E., Bosqued J.-M. Study of plasma pressure distribution in the inner magnetosphere using low-altitude satellites and its importance for the large-scale magnetospheric dynamics // Adv. Space Res. V. 38. No. 8. P. 1631‒1636. 2006. https://doi.org/10.1016/j.asr.2006.05.013
  30. Vorobjev V.G., Starkov G.V., Feldstein Y.I. The auroral oval during the substorm development // Planet. Space Sci. V. 24. No. 10. P. 955‒965. 1976. https://doi.org/10.1016/0032-0633(76)90007-6
  31. Zhou X.W., Russell C.T., Le G., Fuselier S.A., Scudder J.D. Solar wind control of the polar cusp at high altitude// J. Geophys. Res. V. 105. No. A1. P. 245‒252. 2000. https://doi.org/10.1029/1999JA900412

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Observation diagram for December 22, 2003 in the geographic coordinate system. The dashed line is the radiant arc of the aurora. The solid line with an arrow is the trajectory of the F16 satellite; the circles limit the field of view of the all-sky camera at altitudes of 150 km and 240 km; the solid line (MSP) is the meridian of the glow recording by the meridional scanning photometer.

Download (130KB)
3. Fig. 2. Variations of the parameters of the interplanetary medium and the AL index of magnetic activity in the interval 08:30 – 09:30 UT. From top to bottom are shown: By- and Bz- components of the IMF, dynamic pressure of the solar wind (P, nPa), variations of the AL index. The solid vertical line is the time of the satellite crossing the region of auroral precipitation.

Download (124KB)
4. Fig. 3. All-sky camera images. The numbers at the top of each frame indicate world time. Geomagnetic north is at the top of the frame, east is on the left of the frame.

Download (284KB)
5. Fig. 4. Integral characteristics of precipitating particles based on observations by the F16 satellite: (a) ‒ energy fluxes of precipitating ions (Fi, eV/cm2 s sr) and their average energies (Ei, keV), (b) ‒ energy fluxes (Fe) and average energies (Ee) of precipitating electrons. The corrected geomagnetic latitude (CGL) is plotted along the horizontal axis. Horizontal dashed lines ‒ the level of criteria for determining cusp precipitation; vertical dashed lines ‒ cusp boundaries.

Download (208KB)
6. Fig. 5. Characteristics of precipitating particles and auroras over the Spitsbergen archipelago.

Download (57KB)
7. Fig. 6. Aurora keograms in the intervals (a) – 08:30‒ 09:00 UT and (b) – 09:00 – 09:30 UT. The zenith angle is plotted along the vertical axis, the top of the keogram corresponds to the direction of geomagnetic north. The zenith of the observation observatory is in the center of the keogram. The horizontal line with arrows is the IMF interval Bz > 0.

Download (564KB)
8. Fig. 7. Variations in the maximum value of the 557.7 nm emission intensity (I557.7) from MSP observations, variations in the D-component of the magnetic field at the College Observatory (COL) and the AL-index of magnetic activity.

Download (88KB)
9. Fig. 8. Spectra of precipitating electrons in the region of the radiant arc of auroras, recorded at (a) 09:01:47 UT ‒ at latitude 74.1° CGL and (b) ‒ at 09:01:49 UT at latitude 74.0° CGL.

Download (70KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».