Determination of the Velocity of Ionospheric Disturbances from the Dynamics of Additional U-Shaped Traces on Ionograms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

One of the approaches to solving the inverse problem of determining the parameters of ionospheric disturbances is the multiple solution of the “homing-in” problem with the subsequent comparison of the simulation results with the observed data (ionograms). However, this approach is usually associated with significant calculation time costs, which makes it impossible to process large arrays of sounding data. The method described in this paper makes it possible to quickly determine the horizontal velocity of the ionospheric disturbance by descent rate of an additional U-shaped trace moving to lower virtual heights on the vertical ionograms: in order to calculate the velocity, it is proposed to use the results of the ray tracing obtained for the reference background profiles with the disturbances superimposed on them.

Full Text

Restricted Access

About the authors

O. A. Laryunin

Institute of Solar-Terrestrial Physics, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: laroleg@iszf.irk.ru
Russian Federation, Irkutsk

V. I. Kurkin

Institute of Solar-Terrestrial Physics, Siberian Branch, Russian Academy of Sciences

Email: kurkin@iszf.irk.ru
Russian Federation, Irkutsk

A. A. Rybkina

Institute of Solar-Terrestrial Physics, Siberian Branch, Russian Academy of Sciences

Email: rybkina@iszf.irk.ru
Russian Federation, Irkutsk

A. V. Podlesnyi

Institute of Solar-Terrestrial Physics, Siberian Branch, Russian Academy of Sciences

Email: pav@iszf.irk.ru
Russian Federation, Irkutsk

References

  1. Вертоградов Г.Г., Урядов В.П., Выборнов Ф.И. Моделирование распространения декаметровых радиоволн в условиях волновых возмущений концентрации электронов // Изв. вузов. Радиофизика. 2018. Т. 61. № 6. С. 462—473.
  2. Дэвис К. Радиоволны в ионосфере. М.: Мир, 1973. 503 с.
  3. Cervera M.A., Harris T.J. Modeling ionospheric disturbance features in quasi-vertically incident ionograms using 3-D magnetoionic ray tracing and atmospheric gravity waves // J. Geophys. Res. — Space. 2014. V. 119. № 1. P. 431—440.
  4. Cooper J., Cummack C.H. The analysis of travelling ionospheric disturbance with nonlinear ionospheric response // J. Atmos. Solar Terr. Phys. 1986. V. 48. № 1. P. 61—64.
  5. Laryunin O. Studying characteristics of traveling ionospheric disturbances using U-shaped traces on vertical incidence ionograms // Adv. Space Res. 2021. V. 67. № 3. P. 1085—1089.
  6. Lobb R.J., Titheridge J.E. The effects of travelling ionospheric disturbances on ionograms // J. Atmos. Terr. Phys. 1977. V. 39. № 2. P. 129—134.
  7. Lou P., Wei N., Guo L., Feng J., Li X., Yang L. Numerical study of traveling ionosphere disturbances with vertical incidence data // Adv. Space Res. 2020. V. 65. № 4. P. 1306—1320.
  8. Munro G.H., Heisler L.H. Cusp type anomalies in variable frequency ionospheric records // Aust. J. Phys. 1956. V. 9. P. 343—357.
  9. Vybornov F., Sheiner O., Kolchev A., Zykov E., Chernov A., Shumaev V., Pershin A. On the results of the special experiment on the registration of traveling ionospheric disturbances by a system of synchronously operating chirp ionosondes // Atmosphere. 2022. V. 13. № 84.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Altitude dependences of the plasma frequency.

Download (40KB)
3. Fig. 2. Ray trajectories corresponding to lateral reflection.

Download (49KB)
4. Fig. 3. Fragments of experimental ionograms from 04.11.2012. The dotted lines on the bottom panel show the levels of the sickle minima.

Download (101KB)
5. Fig. 4. Sliding of synthesized sickles according to a quasi-linear law.

Download (108KB)
6. Fig. 5. The sequence of synthesized sickles obtained for the background profile shown in Fig. 1 (curve 2).

Download (131KB)
7. Fig. 6. Changing the height of the maximum height profile.

Download (107KB)
8. Fig. 7. Fast and slow decline of the sickle for two different background profiles (a) and (b) (Fig. 6) with the same shift of the disturbance by 15 km.

Download (221KB)
9. Fig. 8. Conversion coefficient from the rate of sliding of the sickle to the rate of horizontal movement of the disturbance as a function of the height of the maximum of the background layer.

Download (40KB)
10. Fig. 9. Histogram of the velocity distribution of horizontal motion of ionospheric disturbances.

Download (73KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».