Use of q-statistics for study of pulsating aurora
- Authors: Chernyshov A.A.1, Kozelov B.V.2, Mogilevsky M.M.1
-
Affiliations:
- Space Research Institute of the Russian Academy of Sciences
- Polar Geophysical Institute
- Issue: Vol 64, No 1 (2024)
- Pages: 60-73
- Section: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/260745
- DOI: https://doi.org/10.31857/S0016794024010077
- EDN: https://elibrary.ru/GQMXMS
- ID: 260745
Cite item
Abstract
The non-extensive statistical mechanics method of Tsallis (or q-statistics) is first applied to study pulsating auroras, which are regularly observed in the auroral ionosphere during geomagnetic disturbances. For systems with long-range interactions, such as ionized gas or plasma, whose dynamics are primarily determined by long-range electromagnetic forces, one can expect that non-additive and non-extensive thermostatistical principles may characterize their macroscopic behavior. This paper shows that pulsating polar auroras exhibit non-extensive properties and can be described, in part, by q-statistics. It is also demonstrated that the non-extensive parameter q correlates well with the flatness coefficient and scaling index, indicating the applicability of this approach to auroral emissions. Thus, q-statistics can be used to analyze phenomena in the high-latitude region of the Earth.
Full Text

About the authors
A. A. Chernyshov
Space Research Institute of the Russian Academy of Sciences
Author for correspondence.
Email: achernyshov@cosmos.ru
Russian Federation, Moscow
B. V. Kozelov
Polar Geophysical Institute
Email: boris.kozelov@gmail.com
Russian Federation, Murmansk region, Apatity
M. M. Mogilevsky
Space Research Institute of the Russian Academy of Sciences
Email: mogilevsky2012@gmail.com
Russian Federation, Moscow
References
- Зеленый Л.М., Милованов А.В. Фрактальная топология и странная кинетика: от теории перколяции к проблемам космической электродинамики // УФН. Т. 174. № 8. С. 809—852. 2004. https://doi.org/10.3367/UFNr.0174.200408a.0809.
- Больцман Л. Лекции по теории газов. М.: Гостехиздат, 554 с. 1953.
- Головчанская И.В., Козелов Б.В., Дэспирак И.В. Исследование широкополосной ELF турбулентности по данным спутника FAST // Геомагнетизм и аэрономия. Т. 52. № 4. С. 501—509. 2012.
- Головчанская И.В., Козелов Б.В., Чернышов A.A., Ильясов A.A., Могилевский M.M. Возможный механизм подавления электростатической неустойчивости, связанной с неоднородным распределением плотности энергии, в авроральной ионосфере // Геомагнетизм и аэрономия. Т. 58. № 2. С. 234—240. 2018. https://doi.org/10.7868/S0016794018020098
- Кузьмин А.К. Фоновые условия и влияние различных световых факторов на изображения распределений интенсивности авроральных эмиссий, получаемые с орбит космических аппаратов // Вопросы электромеханики. Труды ВНИИЭМ. Т. 175. № 2. С. 14—41. 2020.
- Намгаладзе А.Н., Распопов О.М., Ролдугин В.К. Связь пульсаций геомагнитного поля Pi2 с пульсациями интенсивности полярных сияний // Геомагнетизм и аэрономия. Т. 7. № 2. С. 376—378. 1967.
- Чернышов А.А., Могилевский М.М., Козелов Б.В. Фрактальный подход к описанию авроральной области // Физика плазмы. Т. 39. № 7. С. 636—645. 2013. https://doi.org/10.7868/S0367292113060024
- Чернышов А.А., Ильясов А.А., Могилевский М.М., Головчанская И.В., Козелов Б.В. Влияние неоднородностей концентрации плазмы и электрического поля на генерацию электростатического шума в авроральной зоне // Физика плазмы. Т. 41. № 3. C. 277—285. 2015. https://doi.org/10.7868/S0367292115030014
- Чернышов A.A., Чугунин Д.В., Могилевский М.М. Авроральное километровое радиоизлучение как средство диагностики свойств магнитосферы // Письма в ЖЭТФ. Т. 115. № 1. C. 28—34. 2022. https://doi.org/10.31857/S1234567822010050
- Abe S., Okamoto Y. (eds) Nonextensive Statistical Mechanics and Its Application / Lecture Notes in Physics. V. 560. Berlin, Heidelberg, New York: Springer, 277 p. 2001. https://doi.org/10.1007/3-540-40919-X
- Abry P., Flandrin P., Taqqu M.S., Veitch D. Wavelets for the analysis, estimation and synthesis of scaling data / Self-Similar Network Traffic and Performance Evaluation. Eds. K. Park, W. Willinger. New York: Wiley. P. 39—88. 2000. https://doi.org/10.1002/047120644X.ch2
- Akasofu S.-I. Polar and Magnetospheric Substorms. Dordrecht, Holland: Springer, 298 p. 1968. https://doi.org/10.1007/978-94-010-3461-6
- Andrade J.S., Almeida M.P., Moreira A.A., Farias G.A. Extended phase space dynamics for the generalized nonextensive thermostatistics // Phys. Rev. E. V. 65. № 3. ID 036121. 2002. https://doi.org/10.1103/PhysRevE.65.036121
- Antonova E.E., Ermakova N.O. Kappa distribution functions and the main properties of auroral particle acceleration // Adv. Space Res. V. 42. № 5. P. 987—991. 2008. https://doi.org/10.1016/j.asr.2007.04.045
- Arnold B.C. Pareto Distributions. Fairland, MD: International Cooperative Publishing House. 326 p. 1983.
- Aschwanden M. J., Crosby N.B., Dimitropoulou M. et al. 25 Years of self-organized criticality: Solar and Astrophysics // Space Sci. Rev. V. 198. № 1—4. P. 47—166. 2016. https://doi.org/10.1007/s11214-014-0054-6
- Balasis G., Daglis I.A., Papadimitriou C., Kalimeri M., Anastasiadis A., Eftaxias K. Dynamical complexity in Dst time series using non-extensive Tsallis entropy // Geophys. Res. Lett. V. 35. № 14. ID L14102. 2008. https://doi.org/10.1029/2008GL034743
- Balasis G., Daglis I.A., Papadimitriou C., Anastasiadis A., Sandberg I., Eftaxias K. Quantifying dynamical complexity of magnetic storms and solar flares via nonextensive Tsallis entropy // Entropy. V. 13. № 12. P. 1865—1881. 2011. https://doi.org/10.3390/e13101865
- Barbosa C.S., Caraballo R., Alves L.R., Hartmann G.A., Beggan C.D., Viljanen A., Ngwira C.M., Papa A.R.R., Pirjola R.J. The Tsallis statistical distribution applied to geomagnetically induced currents // Space Weather. V. 15. № 9. P. 1094—1101. 2017. https://doi.org/10.1002/2017SW001631
- Barndorff-Nielsen O.E., Cox D.R. Inference and Asymptotics. London: Chapman and Hall. 360 p. 1994.
- Burlaga L.F., Vinas A.F. Triangle for the entropic index q of non-extensive statistical mechanics observed by Voyager 1 in the distant heliosphere // Physica A. V. 361. № 1. P. 173—179. 2006. https://doi.org/10.1016/j.physa.2005.06.097
- Burlaga L.F., Vinas A.F., Wang C. Tsallis distributions of magnetic field strength variations in the heliosphere: 5 to 90 AU // J. Geophys. Res. —Space. V. 112. № 7. ID A07206. 2007. https://doi.org/10.1029/2006JA012213
- Castaing B., Gagne Y., Hopfinger E.J. Velocity probability density functions of high Reynolds number turbulence // Physica D. V. 46. № 2. P. 177—200. 1990. https://doi.org/10.1016/0167-2789(90)90035—N
- Chang T., Tam S.W.Y., Wu C.-C. Complexity induced anisotropic bimodal intermittent turbulence in space plasmas // Phys. Plasmas. V. 11. № 4. P. 1287—1299. 2004. https://doi.org/10.1063/1.1667496
- Chernyshov A.A., Mogilevsky M.M., Kozelov B.V. Use of fractal approach to investigate ionospheric conductivity in the auroral zone // J. Geophys. Res. —Space. V. 118. № 7. P. 4108—4118. 2013. https://doi.org/10.1002/jgra.50321
- Chernyshov A.A., Kozelov B.V., Mogilevsky M.M. Study of auroral ionosphere using percolation theory and fractal geometry // J. Atmos. Sol.-Terr. Phy. V. 161. P. 127—133. 2017. https://doi.org/10.1016/j.jastp.2017.06.013
- Chisham G., Freeman M.P. On the non-Gaussian nature of ionospheric vorticity // Geophys. Res. Lett. V. 37. № 12. ID L12103. 2010. https://doi.org/10.1029/2010GL043714
- Chisham G., Freeman M.P. A statistical model of vorticity in the polar ionosphere and implications for extreme values // J. Geophys. Res. —Space. V. 126. № 11. ID e2021JA029307. 2021. https://doi.org/10.1029/2021JA029307
- Clauset A., Shalizi C.R., Newman M.E.J. Power-law distributions in empirical data // SIAM Rev. V. 51. № 4. P. 661—703. 2009. https://doi.org/10.1137/070710111
- Coxon J.C., Chisham G., Freeman M.P., Anderson B.J., Fear R.C. Distributions of Birkeland current density observed by AMPERE are heavy-tailed or long-tailed // J. Geophys. Res. —Space. V. 127. № 2. ID e2021JA029801. 2022. https://doi.org/10.1029/2021JA029801
- Curado E.M.F., Tsallis C. Generalized statistical mechanics: connection with thermodynamics // J. Phys. A —Math. Gen. V. 24. № 2. P. L69—L72. 1991. https://doi.org/10.1088/0305-4470/24/2/004
- de la Barra E., Vega-Jorquera P. On q-pareto distribution: some properties and application to earthquakes // Eur. Phys. J. B. V. 94. № 1. ID 32. 2021. https://doi.org/10.1140/epjb/s10051-021-00045-7
- Esquivel A., Lazarian A. Tsallis statistics as a tool for studying interstellar turbulence // Astrophys. J. V. 710. № 1. P. 125—132. 2010. https://doi.org/10.1088/0004-637X/710/1/125
- Gjerloev J.W. The SuperMAG data processing technique // J. Geophys. Res. —Space. V. 117. № 9. ID A09213. 2012. https://doi.org/10.1029/2012JA017683
- Golovchanskaya I.V., Kozelov B.V., Sergienko T.I., Brändström U., Nilsson H., Sandahl I. Scaling behavior of auroral luminosity fluctuations observed by Auroral Large Imaging System (ALIS) // J. Geophys. Res. —Space. V. 113. № 10. ID A10303. 2008. https://doi.org/10.1029/2008JA013217
- Ilyasov A.A., Chernyshov A.A., Mogilevsky M.M., Golovchanskaya I.V., Kozelov B.V. Inhomogeneities of plasma density and electric field as sources of electrostatic turbulence in the auroral region // Phys. Plasmas. V. 22. № 3. ID 032906. 2015. https://doi.org/10.1063/1.4916125
- Ilyasov A.A., Chernyshov A.A., Mogilevsky M.M., Golovchanskaya I.V., Kozelov B.V. Influences of shear in the ion parallel drift velocity and of inhomogeneous perpendicular electric field on generation of oblique ion acoustic waves // J. Geophys. Res. —Space. V. 121. № 3. P. 2693—2703. 2016. https://doi.org/10.1002/2015JA022117
- Kaeppler S.R., Nicolls M.J., Strømme A., Kletzing C.A., Bounds S.R. Observations in the E region ionosphere of kappa distribution functions associated with precipitating auroral electrons and discrete aurorae // J. Geophys. Res. —Space. V. 119. № 12. P. 10164—10183. 2014. https://doi.org/10.1002/2014JA020356
- Klimas A., Uritsky V., Donovan E. Multiscale auroral emission statistics as evidence of turbulent reconnection in Earth’s midtail plasma sheet // J. Geophys. Res. —Space. V. 115. № 6. ID A06202. 2010. https://doi.org/10.1029/2009JA014995
- Klimov P., Kalegaev V., Sigaeva K., Ivanova A., Antonyuk G., Benghin V., Zolotarev I. Near-UV pulsations in the aurora region measured by orbital telescope TUS during high-intensity and long—duration continuous AE activity // Remote Sensing. V. 15. № 1. ID 147. 2022. https://doi.org/10.3390/rs15010147
- Kozelov B.V. Fractal approach to description of the auroral structure // Ann. Geophys. V. 21. № 9. P. 2011—2023. 2003. https://doi.org/10.5194/angeo-21-2011-2003
- Kozelov B.V., Golovchanskaya I.V. Derivation of aurora scaling parameters from ground-based imaging observations: Numerical tests // J. Geophys. Res. —Space. V. 115. № 2. ID A02204. 2010. https://doi.org/10.1029/2009JA014484
- Kozelov B.V., Rypdal K. Spatial scaling of optical fluctuations during substorm-time aurora // Ann. Geophys. V. 25. № 4. P. 915—927. 2007. https://doi.org/10.5194/angeo-25-915-2007
- Kozelov B.V., Vjalkova N.Y. Search of temporal chaos in TV images of aurora // International Journal of Geomagnetism and Aeronomy. V. 5. № 3. ID GI3005. 2005. https://doi.org/10.1029/2005GI000102
- Kozelov B.V., Uritsky V.M., Klimas A.J. Power law probability distributions of multiscale auroral dynamics from ground-based TV observations // Geophys. Res. Lett. V. 31. № 20. ID L20804. 2004. https://doi.org/10.1029/2004GL020962
- Leubner M.P., Voros Z. A nonextensive entropy path to probability distributions in solar wind turbulence // Nonlinear Proc. Geoph. V. 12. № 2. P. 171—180. 2005. https://doi.org/10.5194/npg-12-171-2005
- Liu B., Goree J. Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma // Phys. Rev. Lett. V. 100. № 5. ID 055003. 2008. https://doi.org/10.1103/PhysRevLett.100.055003
- Lui A.T.Y., Chapman S.C., Liou K., Newell P.T., Meng C.I., Brittnacher M., Parks G.K. Is the dynamic magnetosphere an avalanching system? // Geophys. Res. Lett. V. 27. № 7. P. 911—914. 2000. https://doi.org/10.1029/1999GL010752
- Mariz A.M. On the irreversible nature of the Tsallis and Renyi entropies // Phys. Lett. A. V. 165. № 5—6. P. 409—411. 1992. https://doi.org/10.1016/0375—9601(92)90339-N
- Maxwell J.C. IV. On the dynamical theory of gases // Philos. T. Roy. Soc. V. 157. P. 49—88. 1867. https://doi.org/10.1098/rstl.1867.0004
- Milovanov A.V., Zelenyi L.M. Functional background of the Tsallis entropy: “coarse-grained” systems and “kappa” distribution functions // Nonlinear Proc. Geoph. V. 7. № 3—4. P. 211—221. 2000. https://doi.org/10.5194/npg—7-211-2000
- Nauenberg M. Critique of q-entropy for thermal statistics // Phys. Rev. E. V. 67. № 3. ID 036114. 2003. https://doi.org/10.1103/PhysRevE.67.036114
- Newell P.T., Gjerloev J.W. Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power // J. Geophys. Res. —Space. V. 116. № 12. ID A12211. 2011. https://doi.org/ 10.1029/2011JA016779
- Paladin G., Vulpiani A. Anomalous scaling laws in multifractal objects // Phys. Rep. V. 156. № 4. P. 147—225. 1987. https://doi.org/10.1016/0370-1573(87)90110-4
- Papadimitriou C., Balasis G., Boutsi A.Z., Daglis I.A., Giannakis O., Anastasiadis A., De Micheles P., Consolini G. Dynamical complexity of the 2015 St.Patrick’s Day magnetic storm at Swarm altitudes using entropy measures // Entropy. V. 22. № 5. ID 574. 2020. https://doi.org/10.3390/e22050574
- Paschmann G., Haaland S., Treumann R., et al. Auroral plasma physics // Space Sci. Rev. V. 103. № 1—4. P. 1—475. 2002.
- Pavlos G.P., Iliopoulos A.C., Zastenker G.N., Zelenyi L.M., Karakatsanis L.P., Riazantseva M.O., Xenakis M.N., Pavlos E.G. Tsallis non-extensive statistics and solar wind plasma complexity // Physica A. V. 422. P. 113—135. 2015. https://doi.org/10.1016/j.physa.2014.12.007
- Pitman E.J.G. Some Basic Theory for Statistical Inference. New York: Chapman and Hall. 118 p. 1979. https://doi.org/10.1201/9781351076777
- Plastino A.R., Plastino A., Tsallis C. The classical N-body problem within a generalized statistical mechanics // J. Phys. A —Math. Gen. V. 27. № 17. P. 5707—5714. 1994. https://doi.org/10.1088/0305—4470/27/17/008
- Ramshaw J.D. H-theorems for the Tsallis and Renyi entropies // Phys. Lett. A. V. 175. № 3—4. P. 169—170. 1993. https://doi.org/10.1016/0375-9601(93)90820-P
- Renyi А. Probability Theory. Budapest: Akad. Kiadó, 1970. 665 p.
- Renyi A. On a new axiomatic theory of probability // Acta Math. Hung. V. 6. № 3—4. P. 285—335. 1955. https://doi.org/10.1007/BF02024393
- Shalizi C.R. Maximum likelihood estimation for q-exponential (Tsallis) distributions // arXiv Mathematics e-prints. math/0701854. 2007. https://doi.org/10.48550/arXiv.math/0701854
- Silva J.R., Plastino A.R., Lima J.A.S. A Maxwellian path to the q-nonextensive velocity distribution function // Phys. Lett. A. V. 249. № 5—6. P. 401—408. 1998. https://doi.org/10.1016/S0375-9601(98)00710-5
- Stepanova M.V., Antonova E.E., Troshichev O. Intermittency of magnetospheric dynamics through non-Gaussian distribution function of PC-index fluctuations // Geophys. Res. Lett. V. 30. № 3. ID 1127. 2003. https://doi.org/10.1029/2002GL016070
- Tam S.W.Y., Chang T., Kintner P.M., Klatt E. Intermittency analyses on the sierra measurements of the electric field fluctuations in the auroral zone // Geophys. Res. Lett. V. 32. № 5. ID l05109. 2005. https://doi.org/10.1029/2004GL021445
- Tsallis C. Possible generalization of Boltzmann — Gibbs statistics // J. Stat. Phys. V. 52. № 1—2. P. 479—487. 1988. https://doi.org/10.1007/BF01016429
- Tsallis C. Non-extensive thermostatistics: brief review and comments // Physica A. V. 221. № 1. P. 277—290. 1995. https://doi.org/10.1016/0378-4371(95)00236-Z
- Tsallis C. Introduction to Nonextensive Statistical Mechanics. Springer, 2009. 382 p. https://doi.org/10.1007/978-0-387-85359-8
- Unnikrishnan K., Richards P. How does solar eclipse influence the complex behavior of midlatitude ionosphere? Two case studies // J. Geophys. Res. —Space. V. 119. № 2. P. 1157—1171. 2014. https://doi.org/10.1002/2013JA018708
- Van Rhijn P.J. On the brightness of the sky at night and total amount of the starlight // Publications of the Astronomical Laboratory at Groningen, 1921. 83 p.
- Watkins N.W., Credgington D., Hnat B., Chapman S.C., Freeman M.P., Greenhough J. Towards synthesis of solar wind and geomagnetic scaling exponents: A fractional Levy motion model // Space Sci. Rev. V. 121. № 1—4. P. 271—284. 2005. https://doi.org/10.1007/s11214-006-4578-2
- Yamamoto T. On the temporal fluctuations of pulsating auroral luminosity // J. Geophys. Res. —Space. V. 93. № 2. P. 897—911. 1988. https://doi.org/10.1029/JA093iA02p00897
- Zanette D.H., Montemurro M.A. Thermal measurements of stationary nonequilibrium systems: a test for generalized thermostatistics // Phys. Lett. A. V. 316. № 3—4. P. 184—189. 2003. https://doi.org/10.1016/S0375-9601(03)01151-4
Supplementary files
