Long-Term Microwave Observations of Middle Atmospheric Ozone in Apatity during Three Winters
- Authors: Kulikov Y.Y.1, Andriyanov A.F.1, Demin V.I.2, Demkin V.M.3, Kirillov A.S.2, Ryskin V.G.1, Shishaev V.A.2
-
Affiliations:
- Institute of Applied Physics, Russian Academy of Sciences (IAP RAS)
- Polar Geophysical Institute (PGI)
- Higher School of Economics (HSE)
- Issue: Vol 63, No 5 (2023)
- Pages: 644-656
- Section: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/134754
- DOI: https://doi.org/10.31857/S0016794023600576
- EDN: https://elibrary.ru/YYZVEP
- ID: 134754
Cite item
Abstract
The results of ground-based microwave observations of ozone in the middle atmosphere in Apatity
(67° N, 33° E) during three winters (2017–2018, 2018–2019 and 2019–2020) are presented. Long-term ozone
observations were carried out during the period of minimum solar activity for cycles 24 and 25. A mobile
microwave spectrometer with an operating frequency of 110.8 GHz was used in the measurements, which
allows tracking the behavior of ozone in the middle atmosphere with a 15-minute time resolution. The microwave
ozone data from ground-based measurements are compared with the MLS/Aura onboard data. Ground
and airborne data are compared with the data of contact measurements with ozonesondes at Sodankyla st.
(67° N, 27° E). In addition, MLS/Aura data from mid-atmospheric temperature soundings are used to interpret
perturbations in the ozone layer associated with sudden stratospheric warmings. A significant influence
sudden stratospheric warming on the ozone vertical distribution at altitudes of 22–60 km was found. At the
same time, the scale of mesospheric ozone variability (60 km) over Apatity is comparable or exceeds the
known model calculations for assessing the impact of solar proton events and auroral electron precipitation
on the ozone of the polar regions.
About the authors
Yu. Yu. Kulikov
Institute of Applied Physics, Russian Academy of Sciences (IAP RAS)
Email: yuyukul@appl.sci-nnov.ru
Nizhny Novgorod, Russia
A. F. Andriyanov
Institute of Applied Physics, Russian Academy of Sciences (IAP RAS)
Email: yuyukul@appl.sci-nnov.ru
Nizhny Novgorod, Russia
V. I. Demin
Polar Geophysical Institute (PGI)
Email: yuyukul@appl.sci-nnov.ru
Apatity, Russia
V. M. Demkin
Higher School of Economics (HSE)
Email: yuyukul@appl.sci-nnov.ru
Nizhny Novgorod, Russia
A. S. Kirillov
Polar Geophysical Institute (PGI)
Email: yuyukul@appl.sci-nnov.ru
Apatity, Russia
V. G. Ryskin
Institute of Applied Physics, Russian Academy of Sciences (IAP RAS)
Email: yuyukul@appl.sci-nnov.ru
Nizhny Novgorod, Russia
V. A. Shishaev
Polar Geophysical Institute (PGI)
Author for correspondence.
Email: yuyukul@appl.sci-nnov.ru
Apatity, Russia
References
- − Белоглазов М.И. Демкин В.М., Красильников А.А., Кукин Л.М., Куликов Ю.Ю., Рыскин В.Г., Шанин В.Н. Микроволновые измерения содержания озона в зимней стратосфере Арктики // Геомагнетизм и аэрономия. Т. 50. № 2. С. 265–272. 2010.
- − Бочковский Д.А., Виролайнен Я.А., Куликов Ю.Ю., Маричев В.Н., Поберовский А.В., Рыскин В.Г., Тимофеев Ю.М. Наземный микроволновый мониторинг озона средней атмосферы над Санкт-Петербургом и Томском во время стратосферного потепления зимой 2013–2014 гг. // Изв. вузов. Радиофизика. Т. 59. № 4. С. 299–307. 2016.
- − Варгин П.Н., Кирюшов Б.М. Внезапное стратосферное потепление в Арктике в феврале 2018 г. и его влияние на тропосферу, мезосферу и озоновый слой // Метеорология и гидрология. № 2. С. 41–56. 2019.
- − Красильников А.А., Куликов Ю.Ю., Мазур А.Б., Рыскин В.Г., Серов Н.В., Федосеев Л.И., Швецов А.А. Обнаружение “озоновых облаков” в верхней стратосфере Земли методом миллиметровой радиометрии // Геомагнетизм и аэрономия. Т. 37. № 3. 174–183. 1997.
- − Красильников А.А., Куликов Ю.Ю., Рыскин В.Г., Федосеев Л.И. Микроволновое радиометрическое зондирование верхней атмосферы над Нижним Новгородом // Изв. вузов. Радиофизика. Т. 41. № 11. С. 1405–1423. 1998.
- − Красильников А.А., Куликов Ю.Ю., Рыскин В.Г. Полярные стратосферные облака и вариации озона по данным микроволновой радиометрии // Труды ХХ Всероссийской конференции по распространению радиоволн. Нижний Новгород. 2–4 июля 2002 г. С. 358–359. 2002а.
- − Красильников А.А., Куликов Ю.Ю., Рыскин В.Г. Особенности поведения озона верхней атмосферы зимой 1999/2000 гг. по результатам одновременных микроволновых наблюдений в Нижнем Новгороде (56° N, 44° E) и Апатитах (67° N, 35° E) // Геомагнетизм и аэрономия. Т. 42. № 2. С. 265–273. 2002б.
- − Красильников А.А., Куликов Ю.Ю., Рыскин В.Г., Щитов А.М. Микроволновые приемники для диагностики малых газовых составляющих земной атмосферы // Изв. РАН. Сер. физическая. Т. 67. № 12. С. 1791–1795. 2003.
- − Красильников А.А., Куликов Ю.Ю., Рыскин В.Г., Демкин В.М., Кукин Л.М., Михайловский В.Л., Шанин В.Н., Шейнер М.З., Шумилов В.А., Щитов А.М. Новый малогабаритный микроволновый спектрорадиометр – озонометр // Приборы и техника эксперимента. № 1. С. 127–133. 2011.
- − Куликов Ю.Ю., Красильников А.А., Рыскин В.Г. Результаты микроволновых исследований структуры озонового слоя полярных широт во время зимних аномальных потеплений стратосферы // Изв. РАН. Физика атмосферы и океана. Т. 38. № 2. С. 182–191. 2002.
- − Куликов Ю.Ю., Рыскин В.Г., Красильников А.А., Кукин Л.М. Микроволновые наблюдения изменчивости озона в стратосфере высоких широт зимой 2002–2003 годов // Изв. вузов. Радиофизика. Т. 48. № 2. С. 134–141. 2005.
- − Куликов Ю.Ю., Красильников А.А., Демкин В.М., Рыскин В.Г. Вариации концентрации мезосферного озона во время полного солнечного затмения 29 марта 2006 года по данным микроволновой радиометрии // Изв. РАН Физика атмосферы и океана. Т. 44. № 4. С. 522–526. 2008.
- − Куликов Ю.Ю., Поберовский А.В., Рыскин В.Г., Юшков В.А. Обнаружение больших флуктуаций в содержании озона средней атмосферы во время внезапных стратосферных потеплений в приполярных широтах Арктики // Геомагнетизм и аэрономия. Т. 60. № 2. С. 261–269. 2020. https://doi.org/101134/S0016793220020097
- − Соломонов С.В., Кропоткина Е.П., Розанов С.Б., Игнатьев А.Н., Лукин А.Н. Влияние сильных внезапных стратосферных потеплений на озон в средней стратосфере по наблюдениям на миллиметровых волнах // Геомагнетизм и аэрономия. Т. 57. № 3. С. 392–400. 2017.
- − Цветкова Н.Д., Варгин П.Н., Лукьянов А.Н., Кирюшов Б.М., Юшков В.А., Хаттатов В.У. Исследование химического разрушения озона и динамических процессов в стратосфере Арктики зимой 2019/20 г. // Метеорология и гидрология. № 9. С. 70–83. 2021. https://doi.org/10.52002/0130-2906-2021-9-70-83
- − Barnett J.J., Corney M. Middle atmosphere reference model derived from satellite data / ICSU Middle Atmosphere Program. Handbook for MAP. V. 16. P. 47–85. 1985.
- − Connor B.J., Siskind D.E., Tsou J.J., Parrish A., Remsberg E.E. Ground-based microwave observations of ozone in the upper stratosphere and mesosphere // J. Geophys. Res. – Atmos. V. 99. № 8. P. 16 757–16 770. 1994. https://doi.org/10.1029/94JD01153
- − Hilsenrath E., Seiden L., Goodman P. An ozone measurement in the mesosphere and stratosphere by means of a rocket sonde // J. Geophys. Res. – Oc. Atm. V. 74. № 28. P. 6873–6879. 1969. https://doi.org/10.1029/JC074i028p06873
- − Hilsenrath E. Ozone measurements in the mesosphere and stratosphere during two significant geophysical events // J. Atmos. Sci. V. 28. № P. 295–297. 1971. https://doi.org/10.1175/1520-0469(1971)028<0295:OMITMA>2.0.CO;2
- − Hilsenrath E. Rocket observations of the vertical distribution of ozone in the polar night and during a mid-winter stratospheric warming // Geophys. Res. Lett. V. 7. № 8. P. 581–584. 1980. https://doi.org/10.1029/GL007i008p00581
- − http://gml.noaa.gov/dv/iadv/graph.php?code=SUM&program=ozmw&type=vp
- − http://mls.jpl.nasa.gov
- − https://mls.jpl.nasa.gov/data/NRT-user-guide-v42.pdf
- − https://acd-ext.gsfc.nasa.gov/Data_services/met/ann_ data.html
- − https://gmao.gsfc.nasa.gov
- − http://cds-espri.ipsl.fr/etherTypo/index.php?id=1663&L=1
- − Keating G.M., Pitts M.C., Young D.F. Ozone reference model for the middle atmosphere (New CIRA) / ICSU Middle Atmosphere Program. Handbook for MAP. V. 31. P. 1–36. 1989.
- − Kulikov Y.Y., Andriyanov A.F., Demin V.I., Demkin V.M., Kirillov A.S., Ryskin V.G., Shishaev V.A. The microwave monitoring of the middle atmosphere ozone on Kola Peninsula during last three winters // “Physics of Auroral Phenomena”. Proc. XLIV Annual Seminar. Apatity. March 15– 19, 2021. P. 168–171. 2021. https://doi.org/10.51981/2588-0039.2021.44.039
- − Kulikov Y.Y., Krasilnikov A.A., Shchitov A.M. New mobile ground-based instrument for research of stratospheric ozone (some results of observation) // The Sixth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW’07) Proceedings. Kharkov, Ukraine. June 25–30, 2007. V. 1. P. 62–66. 2007.
- − Kulikov Yu.Yu., Kuznetsov I.V., Andrianov A.F. et al. Stratospheric ozone variability in high latitudes from microwave observations // J. Geophys. Res. – Atmos. V. 99. № 10. P. 21109–21116. 1994. https://doi.org/10.1029/94.JD01102
- − Kulikov Yu.Yu., Ryskin V.G. Relation between ozone and temperature in the Arctic stratosphere // Int. J. Geomagn. Aeronomy. V. 1. № 3. P. 253–257. 1999.
- − Kulikov Yu.Yu., Ryskin V.G., Krasilnikov A.A. Microwave sounding measurements of the ozone layer in the polar and mid-latitude stratosphere in the winter seasons of 1998–2001 // Izv. Atm. Oc. Phys. V. 39. Suppl. P. S56–S61. 2003.
- − Lee J.-H., Jee G., Kwak Y.-S., Hwang H., Seppälä A., Song I.-S., Turunen E., Lee D.-Y. Polar middle atmospheric responses to medium energy electron (MME) precipitation using numerical model simulations // Atmosphere. V. 12. № 2. ID 133. 2021. https://doi.org/10.3390/atmos12020133
- − Lobsiger E. Künzi K.F. Night-time increase of mesospheric ozone measured with ground-based microwave radiometry // J. Atmos. Terr. Phys. V. 48. № 11–12. P. 1153–1158. 1986. https://doi.org/10.1016/0021-9169(86)90035-8
- − Manney G.L., Schwartz M.J., Krüger K. et al. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric warming // Geophys. Res. Lett. V. 36. № 12. ID L12815. 2009. https://doi.org/10.1029/2009GL038586
- − Manney G.L., Livesey N.J., Santee M.L. et al. Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters // Geophys. Res. Lett. V. 47. № 16. ID e2020GL089063. 2020. https://doi.org/10.1029/2020GL089063
- − Manney G.L., Millan L.F., Santee M.L., Wargan K., Lambert A. et al. Signatures of anomalous transport in the 2019/2020 Arctic stratospheric polar vortex // J. Geophys. Res. – Atmos. V. 127. № 20. ID e2022JD037407. 2022. https://doi.org/10.1029/2022JD037407
- − Matthes K., Funke B., Andersson M.E. et al. Solar forcing for CMIP6 (v3.2) // Geosci. Model Dev. V. 10. № 6. P. 2247–2302. 2017. https://doi.org/10.5194/gmd-10-2247-2017
- − Okui H., Sato K., Koshin D., Watanabe S. Formation of a mesospheric inversion layer and the subsequent stratopause associated with the major stratospheric sudden warming in the 2018/19 // J. Geophys. Res. – Atmos. V. 126. № 18. ID e2021JD034681. 2021. https://doi.org/1029/2021JD034681
- − Palm M., Hoffmann C.G., Golchert S.H.W., Notholt J. The ground-based MW radiometer OZORAM on Spitsbergen – description and status of stratospheric and mesospheric O3 measurements // Atmos. Meas. Tech. V. 3. № 6. P. 1533–1545. 2010. https://doi.org/10.5194/amt-3-1533-2010
- − Penfield H., Litvak M.M., Gottlieb C.A., Lilley A.E. Mesospheric ozone measured from ground-based millimeter wave observations // J. Geophys. Res. V. 81. N 34. P. 6115–6120. 1976. https://doi.org/10.1029/JA081i034p06115
- − Rao J., Ren R., Chen H., Yu J., Zhou J. The stratospheric sudden warming event in February 2018 and its prediction by a climate system model // J. Geophys. Res. – Atmos. V. 123. № 23. P. 13 332–13 345. 2018. https://doi.org.1029/2018JD028908
- − Schoeberl M.R. Stratospheric warming: Observations and theory // Rev. Geophys. V. 16. № 4. P. 521–538. 1978. https://doi.org/10.1029/RG016i004p00521
- − Schranz F., Fernandez S., Kämpfer N., Palm M. Diurnal variation in middle-atmospheric ozone observed by ground-based microwave radiometry at Ny-Ǻlesund over 1 year // Atmos. Chem. Phys. V. 18. № 6. P. 4113–4130. 2018. https://doi.org/10.5194/acp-18-4113-2018
- − Schranz F., Tschanz B., Rüfenacht R., Hocke K., Palm M., Kämpfer N. Investigation of Arctic middle-atmospheric dynamics using 3 years of H2O and O3 measurements from microwave radiometers at Ny-Alesund // Atmos. Chem. Phys. V. 19. № 15. P. 9927–9947. 2019. https://doi.org/10.5194/acp-19-9927-9947
- − Seppälä A., Clilverd M.A. Energetic particle forcing of the Northern Hemisphere winter stratosphere: Comparison to solar irradiance forcing // Frontier in Physics. V. 2. 2014. https://doi.org/10.3389/fphy.2014.00025
- − Smyshlyaev S.P., Vargin P.N., Motsakov M.A. Numerical modeling of ozone loss in the exceptional arctic stratosphere winter-spring of 2020 // Atmosphere. V. 12. № 11. ID 1470. 2021. https://doi.org/10.3390/atmos12111470
- − Waters J.W., Froidevaux L., Harwood R.S. et al. The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite // IEEE Trans. Geosci. Remote. V. 44. № 5. P. 1075–1092. 2006. https://doi.org/10.1109/TGRS.2006.873771
- − Wilson W.J., Schwartz P.R. Diurnal variations of mesospheric ozone using millimeter-wave measurements // J. Geophys. Res. – Oceans. V. 86. № 8. P. 7385–7388. 1981. https://doi.org/10.1029/JC086iC08p07385
- − Zommerfelds R.M., Künzi K.F., Summers M.E., Bevilacqua R.M., Strobel D.F., Allen M., Sawchuck W.J. Diurnal variations of mesospheric ozone obtained by ground-based microwave radiometry // J. Geophys. Res. – Atmos. V. 94. № 10. P. 12 819–12 832. 1989. https://doi.org/10.1029/JD094iD10p12819
Supplementary files
