Properties of the Variability of the Maximum Density of the F2-Layer over Almaty at Different Levels of Solar and Geomagnetic Activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The properties of the variability of the maximum density of the F2-layer Nm at different levels of
solar and geomagnetic activity have been analyzed based on hourly data of the Almaty station (43.2° N, 104° E)
for 1958–1988. The standard deviation σ(x) of the fluctuations of Nm relative to the quiet level
(x = (Nm/Nm0 – 1) × 100, %) and the average shift of these fluctuations xave are used to characterize this
variability. In this path, an empirical model of the F2-layer maximum density Nm0 for low geomagnetic activity
has been created. It has been found that the variability of Nm depends weakly on the level of solar activity.
The dependence of the variability of Nm on geomagnetic activity is one of the main ones, along with the
dependences of this variability on time of day and season. In general, the variance σ2(x) is smaller for quiet
conditions than for periods of high geomagnetic activity. However, during periods of high geomagnetic activity,
a further increase in geomagnetic activity does not lead to an increase in the variance σ2(x). The saturation
in the increase in the variance σ2(x) against the background of a continuing increase in geomagnetic activity
and the absence of this saturation for the average shift xave seems to be a stable property of the variability of
the mid-latitude ionosphere during periods of geomagnetic storms. This conclusion is based on an additional
analysis of ionospheric variability according to data from the Irkutsk and Yamagawa stations, which are
located about 10 degrees north and south of Almaty station, respectively.

About the authors

M. G. Deminov

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
(IZMIRAN)

Email: deminov@izmiran.ru
Moscow, Russia

G. F. Deminova

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
(IZMIRAN)

Email: deminov@izmiran.ru
Moscow, Russia

V. Kh. Depuev

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
(IZMIRAN)

Email: deminov@izmiran.ru
Moscow, Russia

A. Kh. Depueva

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences
(IZMIRAN)

Author for correspondence.
Email: deminov@izmiran.ru
Moscow, Russia

References

  1. – Деминов М.Г. Жеребцов Г.А., Пирог О.М., Шубин В.Н. Регулярные изменения критической частоты F2-слоя спокойной ионосферы средних широт // Геомагнетизм и аэрономия. Т. 49. № 3. С. 393–399. 2009.
  2. – Деминов М.Г., Деминова Г.Ф., Жеребцов Г.А., Полех Н.М. Свойства изменчивости концентрации максимума F2-слоя над Иркутском при разных уровнях солнечной и геомагнитной активности // Солнечно-земная физика. Т. 1. № 1. С. 56–62. 2015. https://doi.org/10.12737/6558
  3. – Altadill D. Time/altitude electron density variability above Ebro, Spain // Adv. Space Res. V. 39. № 5. P. 962–969. 2007. https://doi.org/10.1016/j.asr.2006.05.031
  4. – Araujo-Pradere E.A., Fuller-Rowell T.J., Codrescu M.V. STORM: An empirical storm-time ionospheric correction model, 1, Model description // Radio Sci. V. 37. № 5. 1070. 2002. https://doi.org/10.1029/2001RS002467
  5. – Araujo-Pradere E.A., Fuller-Rowell T.J., Codrescu M.V., Bilitza D. Characteristics of the ionospheric variability as a function of season, latitude, local time, and geomagnetic activity // Radio Sci. V. 40. № 5. RS5009. 2005. https://doi.org/10.1029/2004RS003179
  6. – Bilitza D. IRI the international standard for the ionosphere // Adv. Radio Sci. V. 16. P. 1–11. 2018. https://doi.org/10.5194/ars-16-1-2018
  7. – Buonsanto M.J. Ionospheric storms: a review // Space. Sci. Rev. V. 88. № 3–4. P. 563–601. 1999. https://doi.org/10.1023/A:1005107532631
  8. – Deminov M.G., Deminova G.F., Zherebtsov G.A., Polekh N.M. Statistical properties of variability of the quiet ionosphere F2-layer maximum parameters over Irkutsk under low solar activity // Adv. Space Res. V. 51. № 5. P. 702–711. 2013. https://doi.org/10.1016/j.asr.2012.09.037
  9. – Forbes J.M., Palo S.E., Zhang X. Variability of the ionosphere // J. Atmos. Sol.-Terr. Phy. V. 62. № 8. P. 685–693. 2000. https://doi.org/10.1016/S1364-6826(00)00029-8
  10. – Fotiadis D.N., Kouris S.S. A functional dependence of foF2 variability on latitude // Adv. Space Res. V. 37. № 5. P. 1023–1028. 2006. https://doi.org/10.1016/j.asr.2005.02.054
  11. – Lei J., Liu L., Wan W., Zhang S.-R. Variations of electron density based on long-term incoherent scatter radar and ionosonde measurements over Millstone Hill // Radio Sci. V. 40. № 2. RS2008 2005. https://doi.org/10.1029/2004RS003106
  12. – Liu L., Wan W., Ning B., Pirog O.M., Kurkin V.I. Solar activity variations of the ionospheric peak electron density // J. Geophys. Res. – Space. V. 111. № 8. A08304. 2006. https://doi.org/10.1029/2006JA011598
  13. – Ma R., Xu J., Wang W., Yuan W. Seasonal and latitudinal differences of the saturation effect between ionospheric NmF2 and solar activity indices // J. Geophys. Res. – Space. V. 114. № 10. A10303. 2009. https://doi.org/10.1029/2009JA014353
  14. – Pavlov A.V., Pavlova N.M., Makarenko S.F. A statistical study of the mid-latitude NmF2 winter anomaly // Adv. Space Res. V. 45. № 3. 374–385. 2010. https://doi.org/10.1016/j.asr.2009.09.003
  15. – Pirog O., Deminov M., Deminova G., Zherebtsov G., Polekh N. Peculiarities of the nighttime winter foF2 increase over Irkutsk // Adv. Space Res. V. 47. № 6. P. 921–929. 2011. https://doi.org/10.1016/j.asr.2010.11.015
  16. – Ratovsky K.G., Medvedev A.V., Tolstikov M.V. Diurnal, seasonal and solar activity pattern of ionospheric variability from Irkutsk Digisonde data // Adv. Space Res. V. 55. № 8. P. 2041–2047. 2015. https://doi.org/10.1016/j.asr.2014.08.001
  17. – Ratovsky K.G., Medvedeva I.V. Local empirical model of ionospheric variability // Adv. Space Res. V. 71. № 5. P. 2299–2306. 2023. https://doi.org/10.1016/j.asr.2022.10.065
  18. – Richards P.G., Fennelly J.A., Torr D.G. EUVAC: A solar EUV flux model for aeronomic calculations // J. Geophys. Res. – Space. V. 99. № 5. P. 8981–8992. 1994. https://doi.org/10.1029/94JA00518
  19. – Richards P.G., Woods T.N., Peterson W.K. HEUVAC: A new high resolution solar EUV proxy model // Adv. Space Res. V. 37. № 2. P. 315–322. 2006. https://doi.org/10.1016/j.asr.2005.06.031
  20. – Rishbeth H., Mendillo M. Patterns of F2-layer variability // J. Atmos. Sol.-Terr. Phy. V. 63. N 15. P. 1661–1680. 2001. https://doi.org/10.1016/S1364-6826(01)00036-0
  21. – Taylor J.R. An introduction to error analysis. – Mill Valley, CA: Univer. Sci. Books, 270 p. 1982.
  22. – Wrenn G.L. Time-weighted accumulations ap(τ) and Kp(τ) // J. Geophys. Res. – Space. V. 92. № 9. P. 10 125–10 129. 1987. https://doi.org/10.1029/JA092iA09p10125
  23. – Wrenn G.L., Rodger A.S. Geomagnetic modification of the mid-latitude ionosphere – Toward a strategy for the improved forecasting of foF2 // Radio Sci. V. 24. № 1. P. 99–111. 1989. https://doi.org/10.1029/RS024i001p00099
  24. – Zhang S.-R., Holt J.M. Ionospheric climatology and variability from long-term and multiple incoherent scatter radar observations: variability // Ann. Geophys. V. 26. № 6. P. 1525–1537. 2008. https://doi.org/10.5194/angeo-26-1525-2008

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (86KB)

Copyright (c) 2023 М.Г. Деминов, Г.Ф. Деминова, В.Х. Депуев, А.Х. Депуева

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».