An Empirical Model for Estimating the Velocities and Delays of Interplanetary Coronal Mass Ejections
- Authors: Shlyk N.S.1, Belov A.V.1, Abunina M.A.1, Abunin A.A.1
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation, Russian Academy of Sciences (IZMIRAN)
- Issue: Vol 63, No 5 (2023)
- Pages: 599-608
- Section: Articles
- URL: https://journals.rcsi.science/0016-7940/article/view/134749
- DOI: https://doi.org/10.31857/S0016794023600175
- EDN: https://elibrary.ru/GRVODM
- ID: 134749
Cite item
Abstract
We studied the behavior of the interplanetary coronal mass ejection velocity as a function of the
source heliolongitude (associated solar flare), initial ejection velocity, and background solar wind velocity.
The modeling is based on data on 364 ejections of solar matter accompanied by flares observed in the
SOHO/LASCO coronograph, whose interplanetary analogues were subsequently recorded near the Earth in
the period from 1995 to 2021. A model is described that makes it possible to estimate the transit and maximum
velocities of the corresponding interplanetary disturbance, as well as the time of its arrival to the Earth. The
average absolute error in estimating the propagation time of interplanetary coronal mass ejections for the considered
364 events is 11.5 h, and the average relative error is 16.5%.
About the authors
N. S. Shlyk
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation,Russian Academy of Sciences (IZMIRAN)
Email: nshlyk@izmiran.ru
Moscow, Troitsk, Russia
A. V. Belov
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation,Russian Academy of Sciences (IZMIRAN)
Email: nshlyk@izmiran.ru
Moscow, Troitsk, Russia
M. A. Abunina
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation,Russian Academy of Sciences (IZMIRAN)
Email: nshlyk@izmiran.ru
Moscow, Troitsk, Russia
A. A. Abunin
Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation,Russian Academy of Sciences (IZMIRAN)
Author for correspondence.
Email: nshlyk@izmiran.ru
Moscow, Troitsk, Russia
References
- − Шлык Н.С., Белов А.В., Абунина М.А., Абунин А.А., Оленева В.А., Янке В.Г. Влияние взаимодействующих возмущений солнечного ветра на вариации галактических космических лучей // Геомагнетизм и аэрономия. Т. 61. № 6. С. 694–703. 2021. https://doi.org/10.31857/S0016794021060134
- − Belov A., Shlyk N., Abunina M., Abunin A., Papaioannou A. Estimating the transit speed and time of arrival of interplanetary coronal mass ejections using CME and solar flare data // Universe. V. 8. I. 6. Article ID 327. 2022. https://doi.org/10.3390/universe8060327
- − Čalogović J., Dumbović M., Vršnak B., Sudar D., Martinić K., Temmer M., Veronig A. Probabilistic Drag-Based Ensemble Model (DBEM) evaluation for heliospheric propagation of CMEs // Solar Phys. V. 296. Article ID 114. 2021. https://doi.org/10.1007/s11207-021-01859-5
- − Cane H.V., Richardson I.G., St. Cyr O.C. Coronal mass ejections, interplanetary ejecta and geomagnetic storms // Geophys. Res. Lett. V. 27. № 21. P. 3591–3594. 2000.
- − Davies J.A., Harrison R.A., Perry C.H. et al. A self-similar expansion model for use in solar wind transient propagation studies // Astrophys. J. V. 750. № 1. Article ID 23. 2012. https://doi.org/10.1088/0004-637X/750/1/23
- − Feng X., Yang L., Xiang C., Wu S.T., Zhou Y., Zhong D. Three-dimensional Solar WIND modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid // Astrophys. J. V. 723. № 1. P. 300–319. 2010. https://doi.org/10.1088/0004-637X/723/1/300
- − Gopalswamy N., Lara A., Lepping R.P., Kaiser M.L., Berdichevsky T.M., St. Cyr O.C. Interplanetary acceleration of coronal mass ejections // Geophys. Res. Lett. V. 27. № 2. P. 145–148. 2000. https://doi.org/10.1029/1999GL003639
- − Gopalswamy N. Solar connections of geoeffective magnetic structures // J. Atm. Solar-Terr. Phys. V. 70. P. 2078–2100. 2008. https://doi.org/10.1016/j.jastp.2008.06.010
- − Gopalswamy N., Yashiro S., Michalek G., Xie H., Mäkelä P., Vourlidas A., Howard R.A. A Catalog of Halo Coronal Mass Ejections from SOHO // Sun and Geosphere. V. 5. № 1. P. 7–16. 2010.
- − Gosling J. T., Hildner E., MacQueen R.M., Munro R.H., Poland A.I., Ross C.L. The speeds of coronal mass ejection events // Solar Phys. V. 48. P. 389–397. 1976. https://doi.org/10.1007/BF00152004
- − Gosling J.T., Bame S.J., McComas D.J., Phillips J.L. Coronal mass ejections and large geomagnetic storms // Geophys. Res. Lett. V. 17. I. 7. P. 901–904. 1990. https://doi.org/10.1029/GL017i007p00901
- − Hess P., Zhang J. A study of the Earth-affecting CMEs of solar cycle 24 // Solar Phys. V. 292. Article number 80. 2017. https://doi.org/10.1007/s11207-017-1099-y
- − Lamy P.L., Floyd O., Boclet B., Wojak J., Gilardy H., Barlyaeva T. Coronal mass ejections over solar cycles 23 and 24 // Space Sci. Rev. V. 215. Article number 39. 2019. https://doi.org/10.1007/s11214-019-0605-y
- − Lindsay G.M., Luhmann J.G., Russell C.T., Gosling J.T. Relationships between coronal mass ejection speeds from coronagraph images and interplanetary characteristics of associated interplanetary coronal mass ejections // J. Geophys. Res. V. 104. № A6. P. 12 515–12 523. 1999.
- − Lugaz N., Temmer M., Wang Y., Farrugia C.J. The interaction of successive coronal mass ejections: a review // Solar Phys. V. 292. Article number 64. 2017. https://doi.org/10.1007/s11207-017-1091-6
- − Michałek G., Gopalswamy N., Yashiro S. A new method for estimating widths, velocities, and source location of halo coronal mass ejections // Astrophys. J. V. 584. P. 472–478. 2003. https://doi.org/10.1086/345526
- − Odstrcil D. Modeling 3-D solar wind structure // Adv. Space Res. V. 32. № 4. P. 497–506. 2003. https://doi.org/10.1016/S0273-1177(03)00332-6
- − Paouris E., Mavromichalaki H. Effective Acceleration Model for the arrival time of interplanetary shocks driven by coronal mass ejections // Solar Phys. V. 292. Article number 180. 2017. https://doi.org/10.1007/s11207-017-1212-2
- − Paouris E., Vourlidas A., Papaioannou A., Anastasiadis A. Assessing the projection correction of coronal mass ejection speeds on time-of-arrival prediction performance using the Effective Acceleration Model // Space Weather. V. 19. I. 2. e2020SW002617. 2021. https://doi.org/10.1029/2020SW002617
- − Richardson I.G., Cane H.V. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties // Solar Phys. V. 264. P. 189–237. 2010. https://doi.org/10.1007/s11207-010-9568-6
- − Riley P., Mays M.L., Andries J. et al. Forecasting the arrival time of coronal mass ejections: analysis of the CCMC CME scoreboard // Space Weather. V. 16. P. 1245–1260. 2018. https://doi.org/10.1029/2018SW001962
- − Shen F., Feng X., Wu S. T., Xiang C. Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: Numerical simulation of the January 1997 Sun-Earth connection event // J. Geophys. Res. V. 112. A06109. 2007. https://doi.org/10.1029/2006JA012164
- − Shugay Y., Kalegaev V., Kaportseva K., Slemzin V., Rodkin D., Eremeev V. Modeling of solar wind disturbances associated with coronal mass ejections and verification of the forecast results // Universe. V. 8. I. 11. Article ID 565. 2022. https://doi.org/10.3390/universe8110565
- − Temmer M., Preiss S., Veronig A.M. CME projection effects studied with STEREO/COR and SOHO/LASCO // Solar Phys. V. 256. P. 183–199. 2009. https://doi.org/10.1007/s11207-009-9336-7
- − Thernisien A. Implementation of the Graduated Cylindrical Shell Model for the three-dimensional reconstruction of coronal mass ejections // Astrophys. J. Suppl. Ser. V. 194. № 2. Article number 33. 2011. https://doi.org/10.1088/0067-0049/194/2/33
- − Tsurutani B.T., Gonzalez W.D. The Interplanetary causes of magnetic storms: A review. Eds. Tsurutani B.T., Gonzalez W.D., Kamide Y., Arballo J. K. Geophys. Monogr. Ser. / Wash. DC Am. Geophys. Union. P. 77–89. 1997. https://doi.org/10.1029/GM098p0077
- − Vršnak B., Sudar D., Ruždjak D., Žic T. Projection effects in coronal mass ejections. // Astron. Astrophys. V. 469. P. 339–346. 2007. https://doi.org/10.1051/0004-6361:20077175
- − Vršnak B., Žic T., Vrbanec D. et al. Propagation of interplanetary coronal mass ejections: the drag-based model // Solar Phys. V. 28. P. 295–315. 2013. https://doi.org/10.1007/s11207-012-0035-4
- − Wang Y. M., Yee P. Z., Wang S., Zhou G. P., Wang J. A statistical study on the geoeffectiveness of Earth-directed coronal mass ejections from March 1997 to December 2000 // J. Geophys. Res. – Space. V. 107. № A11. Article ID 1340. 2002. https://doi.org/10.1029/2002JA009244
- − Webb D.F., Howard T.A. Coronal mass ejections: observations // Living Rev. Sol. Phys. V. 9. Article number 3. 2012. https://doi.org/10.12942/lrsp-2012-3
- − Yashiro S., Gopalswamy N., Akiyama S., Michałek G., Howard R.A. Visibility of coronal mass ejections as a function of flare location and intensity // J. Geophys. Res. V. 110. Article ID A12S05. 2005. https://doi.org/10.1029/2005JA011151
- − Zhang J., Dere K.P., Howard R.A., Bothmer V. Identification of solar sources of major geomagnetic storms between 1996 and 2000 // Astrophys. J. V. 582. P. 520–533. 2003. https://doi.org/10.1086/344611
- − Zhang J., Temmer M., Gopalswamy N. et al. Earth-affecting solar transients: A review of progresses in solar cycle 24 // Prog. Earth Planet. Sci. V. 8. Article number 56. 2021. https://doi.org/10.1186/s40645-021-00426-7
Supplementary files
