Prediction of Isolated Substorms by a Package of Parallel Neural Networks

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A neural network forecast of substorms caused by the impact of solar wind plasma flows on the
Earth’s magnetosphere has been performed. For this, recurrent neural network models were created based on
physical cause-and-effect relationships of the dynamics of high-latitude geomagnetic activity (according to
the AL index) with the parameters of the interplanetary magnetic field (IMF) and solar wind plasma (SWP).
Two parameters are used as input sequences: the bz-component of the IMF and the integral parameter
Σ[NV2], taking into account the prehistory of the process of pumping the kinetic energy of the solar wind into
the magnetosphere, where N and V are the plasma density and solar wind velocity, respectively. The forecast
of the AL index according to SWP and IMF for 10 min, etc. with 10 min discreteness individually by an individual
artificial neural network (ANN) for each point corresponding to the dynamics of the AL index was
completed. This means that the prediction of a continuous series of values AL index is achieved by a parallel
running of the ANN package. The number of ANNs in the package is determined by the duty cycle of the
required predictive series of the AL index, while taking 90 min of the history of input parameters in each of
the networks into account provides a prediction of the values AL index with an accuracy of ~80%

About the authors

N. A. Barkhatov

Minin Nizhny Novgorod State Pedagogical University

Email: nbarkhatov@inbox.ru
Nizhny Novgorod, 603950 Russia

S. E. Revunov

Minin Nizhny Novgorod State Pedagogical University

Email: nbarkhatov@inbox.ru
Nizhny Novgorod, 603950 Russia

O. M. Barkhatova

Nizhny Novgorod State University of Architecture and Civil Engineering

Email: nbarkhatov@inbox.ru
Nizhny Novgorod, 603000 Russia

E. A. Revunova

Nizhny Novgorod State University of Architecture and Civil Engineering

Email: nbarkhatov@inbox.ru
Nizhny Novgorod, 603000 Russia

V. G. Vorobjev

Polar Geophysical Institute

Author for correspondence.
Email: nbarkhatov@inbox.ru
Murmansk region, Apatity, 184209 Russia

References

  1. – Barkhatov N.A., Revunov S.E. Uryadov V.P. Artificial neural network technique for predicting the critical frequency of the ionospheric F2 layer // Radiophys. Quantum. Electron. V. 48. P. 1–13. 2005. https://doi.org/10.1007/s11141-005-0043-4
  2. – Barkhatov N.A., Vorobjev V.G., Revunov S.E., Barkhatova O.M., Revunova E.A. and Yagodkina O.I. Neural network classification of substorm geomagnetic activity caused by solar wind magnetic clouds // J. Atmospheric and Solar-Terrestrial Physics. V. 205. 2020. https://doi.org/10.1016/j.jastp.2020.105301
  3. – Elman J.L. Learning and development in neural networks: The importance of starting small. Cognition. V. 48. P. 71–99. 1993
  4. – Hernandez J.V., Tajima T., Horton W. Neural net forecasting for geomagnetic activity // Geophys. Res. Lett. V. 20. № 23. P. 2707–2710. 1993. https://doi.org/10.1029/93GL02848
  5. – Li X., Oh K.S., Temerin M. Prediction of the AL index using solar wind parameters // J. Geophys. Res. V. 112. A06224. 2007. https://doi.org/10.1029/2006JA011918
  6. – Valach F., Bochnicek J., Hejda P., Revallo M. Strong magnetic activity forecast by neural networks under dominant southern orientation of interplanetary magnetic field // Adv. SpaceRes. V. 53. № 4. P. 589–598. 2014. https://doi.org/10.1016/j.asr.2013.12.005
  7. – Weigel R.S., Klimas A.J., Vassiliadis D. Solar wind coupling to and predictability of ground magnetic field and their time derivatives // J. Geophys. Res. V. 107. № A7. P. 1298. 2003. https://doi.org/10.1029/2002JA009627
  8. – Бархатов Н.А., Беллюстин Н.С., Левитин А.Е., Сахаров С.Ю. Сравнение эффективности предсказания индекса геомагнитной активности Dst искусственными нейронными сетями. // Изв. ВУЗов “Радиофизика”. Т. 43. № 5 С. 385–394. 2000
  9. – Бархатов Н.А., Воробьев В.Г., Ревунов С.Е., Ягодкина О.И. Проявление динамики параметров солнечного ветра на формирование суббуревой активности // Геомагнетизм и аэрономия. Т. 57. № 3. С. 273–279. 2017
  10. – Бархатов Н.А., Королев А.В., Левитин А.Е., Сахаров С.Ю. Пересчет современных индексов полярной активности к классическим // Изв. ВУЗов “Радиофизика”. Т. 47. № 3. С. 200–208. 2004
  11. – Бархатов Н.А., Ревунов С.Е. Искусственные нейронные сети в задачах солнечно-земной физики. Монография. Изд-во “Поволжье”. 407 С. 2010.
  12. – Хайкин С. Нейронные сети, Полный курс. 2-е изд., пер. с англ., М.: “Вильямс”. 1104 с. 2006.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (25KB)
3.

Download (190KB)
4.

Download (196KB)

Copyright (c) 2023 Н.А. Бархатов, С.Е. Ревунов, О.М. Бархатова, Е.А. Ревунова, В.Г. Воробьев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».