FEATURES OF THE INTERACTION OF SHEELITE WITH HCl SOLUTIONS AT 400 AND 500 ° C, 100 MPa AND VARIOUS f(O2) (ACCORDING TO EXPERIMENTAL AND CALCULATED DATA)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Experimental studies were carried out on the solubility of scheelite in HCl solutions in the concentration range from 0.01 to 0.316 mol•kg-1 H2O at 400 and 500°C, a pressure of 100 MPa and the fugacity of oxygen (hydrogen) specified by the buffers Cu2O-CuO, Fe3O4-Fe2O3, Ni-NiO and Co-CoO. It was found that scheelite in HCl solutions at the specified parameters dissolves incongruently. In solutions containing from 0.01 to 0.0316 m HCl, minor amounts of tungsten oxides WO3 and (or) WO3-x are found in the run products, along with scheelite. In solutions containing from 0.1 to 0.316 m HCl, the formation of calcium tungsten bronzes (CTB) CaxWO3 is observed, the average composition of which corresponds to the formula Ca0.07WO3. Based on the analysis of the experimental data obtained, the free energies of the formation of tungsten oxides WO3, WO2.9, scheelite and calcium of tungsten bronze were calculated. Using mutually agreed thermodynamic data, the solubility of Sch in solutions of HCl, (Na,K)Cl with the participation of alumino-silicates is calculated. It is shown that the scheelite has a wide area of congruent solubility in saline systems.

About the authors

A. F. Redkin

D.S. Korzhinskii Institute of Experimental Mineralogy Russian Academy of Sciences (IEM RAS)

Email: redkin@iem.ac.ru
142432, Academician Osipyan str., 4, Chernogolovka, Moscow region, Russia

N. P. Kotova

D.S. Korzhinskii Institute of Experimental Mineralogy Russian Academy of Sciences (IEM RAS)

Author for correspondence.
Email: kotova@iem.ac.ru
142432, Academician Osipyan str., 4, Chernogolovka, Moscow region, Russia

References

  1. Брызгалин О.В. О растворимости вольфрамовой кислоты в водно-солевых растворах при высоких температурах // Геохимия. 1976. № 6. С. 864–870.
  2. Жидикова А.П., Ходаковский И.Л. Термодинамические свойства ферберита, гюбнерита, шеелита и повелита. Физико-химические модели петрогенеза и рудообразования. Новосибирск: Наука, 1984. 156 с.
  3. Коржинская В.С., Зарайский Г.П. Экспериментальное исследование равновесия шеелит-ферберит в хлоридном флюиде при Т = 300–600°C, Р = 1 кбар // Докл. АН. Сер. Геохимия. 1997. Т. 353. № 5. С. 663–666.
  4. Наумов Г.Б., Рыженко Б.Н., Ходаковский И.Л. Справочник термодинамических величин (для геологов). М.: Атомиздат, 1971. 384 с.
  5. Покровский В.А. Исследование минеральных реакций в модельных гидротермальных системах: автореф. дисс. … канд. геол.-минералог. наук. М: МГУ, 1984.
  6. Редькин А.Ф. Экспериментальное и термодинамическое изучение реакций, контролирующих условия образования околорудных березитов: автореф. дисс. … канд. хим. наук. М: ГЕОХИ АН СССР, 1983. 27 с.
  7. Рафальский Р.П., Брызгалин О.В., Федоров П.Л. Перенос вольфрама и отложение шеелита в гиротермальных условиях // Геохимия. 1984. № 5. С. 611–624.
  8. Рафальский Р.П. Гидротермальные равновесия и процессы минералообразования. М.: Атомиздат, 1973. 288 с.
  9. Черкашина Н.И., Павленко В.И., Ястребинский Р.Н. Фазовые переходы и изменение электрофизических свойств WO3 в температурном диапазоне 83–673 К // Известия ВУЗов. Физика. 2019. Т. 62. № 5 (737). С. 126–131.
  10. Шваров Ю.В. О термодинамических моделях реальных растворов // Геохимия. 2007. № 6. С. 670–679.
  11. Akinfiev N.N., Korzhinskaya V.S., Kotova N.P., Redkin A.F., Zotov A.V. Niobium and tantalum in hydrothermal fluids: Thermodynamic description of hydroxide and hydroxofluoride complexes // Geochim. Cosmochim. Acta. 2020. V. 280. P. 102–115.
  12. Akinfiev N., Zotov A. Thermodynamic description of equilibria in mixed fluids (H2O-non-polar gas) over a wide range of temperature (25–700°C) and pressure (1–5000 bars) // Geochim. Cosmochim. Acta. 1999. V. 63 (13/14). P. 2025–2041.
  13. Cazzanelli E., Vinegoni C., Mariotto G., Kuzmin A. and Purans J. Low-temperature polymorphism in tungsten trioxide powders and its dependence on mechanical treatments // J. Solid State Chem. 1999. V. 143. P. 24–32.
  14. Charlu T.V., Kleppa O.J. High-temperature combustion calorimetry 1. Enthalpies of formation of tungsten oxides // J. Chem. Thermodyn. 1973. V. 5. P. 325–330.
  15. Chase Jr. M.W. NIST-JANAF thermochemical tables // Journal of physical and chemical reference data, Monograph;, no. 9. American Chemical Society; Woodbury N.Y. American Institute of Physics for the National Institute of Standards and Technology. 1998. 1961 p.
  16. Foster R.P. Solubility of scheelite in hydrothermal chloride solutions // Chem. Geol. 1977. V. 20(1). P. 7–43.
  17. Johnson J.W., Oelkers E.H., Helgeson H.C. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C // Computers & Geosciences. 1992. V. 18 (7). 899–947.
  18. Ghosh K., Roy A., Tripathi S., Ghule S., Singh A.K., Ravishankar N. Insights into nucleation, growth and phase selection of WO3: morphology control and electrochromic properties // J. Mater. Chem. 2017. V. 5. P. 7307–7316.
  19. Han B., Khoroshilov A.V., Tyurin A.V., Baranchikov A.E., Razumov M.I., Ivanova O.S., Gavrichev K.S., Ivanov V.K. WO3 thermodynamic properties at 80–1256 K revisited // J. Therm. Anal. Calorim. 2020. V. 142. P. 1533–1543.
  20. Helgeson H.C., Delany J.M., Nesbitt H.W., Bird D.K. Summary and critique of the thermodynamic properties of rock-forming minerals // Amer. J. Sci. 1978. V. 278-A. 229 p.
  21. Hemley J.J. Some mineralogical equilibria in the system K2O-Al2O3-SiO2-H2O // Amer. J. Sci. 1959. V. 257. P. 241–270.
  22. Hu W., Tong W., Li L., Zheng J., Li G. Cation non-stoichiometry in multi-component oxide nanoparticles by solution chemistry: a case study on CaWO4 for tailored structural properties // Phys. Chem. 2011. V. 13. P. 11634–11643.
  23. Khodokovskiy I.L., Mishin I.V. Solubility products of calcium molybdate and calcium tungstate; ratio of powellite to scheelite mineralization under hydrothermal conditions // Int. Geol. Rev. 1971. V. 13. №. 5. P. 760–768.
  24. Krupka K.M., Robie R.A., Hemingway B.S. High-temperature heat capacities of corundum, periclase, anorthite, CaAl2Si2O8 glass, muscovite, pyrophyllite, KAlSi3O8 glass, grossular, and NaAlSi3O8 glass // Am. Min. 1979. V. 64 (1–2). P. 86–101.
  25. Lassner E., Schubert W.-D. Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds. Kluwer Academic / Plenum Publishers New York, 1999. 447 p.
  26. Lunk H.-J., Ziemer B., Salmen M., Heidemann D. What is behind ‘tungsten blue oxides? // Proceedings of the 13 International Plansee Seminar, Eds. H. Bildstein and R. Eck, Metallwerk Plansee, Reutte. 1993. V. 1. P. 38–56
  27. Mews M., Korte L., Rech B. Oxygen Vacancies in Tungsten Oxide and Their Influence on Tungsten Oxide/Silicon Heterojunction Solar Cells // Sol. Energy Mater. Sol. Cells. 2016. V. 158. P. 77–83.
  28. Meyer C., Hemley J.J. Wall rock alteration. In: Geochemistry of Hydrothermal Ore Deposits (ed. H.L. Barnes). New York: Holt, Rinehart, and Winston, 1967. P. 166–235.
  29. Poling B.E., Thomson G.H., Friend D.G., Rowley R.L., Wilding W. Section 2. Physical and Chemical Data. Perry’s Chemical Engineers’ Handbook. 8-th Edition. (Don W. Green and Robert P.E. Perry eds.). McGraw-Hill Companies, Inc. New York, NY, 2008. 2728 p. https://doi.org/10.1036/0071511245
  30. Rao M.C. Structure and properties of WO3 thin films for electrochromic device application // J. Non oxide Glasses. 2013. V. 5 (1). P. 1–8.
  31. Redkin A.F., Cygan G.L. Experimental determination of ferberite solubility in the KCl-HCl-H2O system at 400–500°C, and 20–100 MPa // In Advances in Experimental and Genetic Mineralogy (Eds.: Yu. Litvin., O. Safonov). Springer. New York. 2020. Chapter 7. P. 137–162.
  32. Robie R.A., Hemingway B.S., Fisher J.R. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures // U.S. Geological Survey Bulletin 1452. Washington. 1978. 456 p.
  33. Robie R.A., Hemingway B.S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures // U.S. Geological Survey Bulletin 2131. Washington. 1995. 461 p.
  34. Salje E. The orthorhombic phase of WO3 // Acta Cryst. B33. 1977. P. 574–577.
  35. Sverjensky D.A., Hemley J.J., and D’Angelo W.M. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria // Geochim. Cosmochim. Acta. 1991. V. 55. P. 989–1004.
  36. Vogt T., Woodward P. M. and Hunter B. A. The high-temperature phases of WO3 // J. Solid State Chem. 1999. V. 144. P. 209–215.
  37. Wood S. A. and Samson I. M. The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl // Economic Geology. 2000. V. 95(1), P. 143–182.
  38. Wood S.A. and Vlassopoulos D. Experimental determination of the hydrothermal solubility and speciation of tungsten at 500°C and 1 kbar // Geochim. Cosmochim. Acta. 1989. V. 53. P. 303–312
  39. Wriedt H.A. The O-W (Oxygen-Tungsten) system // Bull. Alloy Phase Diagr. 1989. V. 10(4). P. 368–384.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (748KB)
4.

Download (236KB)
5.

Download (220KB)
6.

Download (76KB)
7.

Download (185KB)

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies