COUPLED SOLUBILITY OF Cu and Ag IN CHLORIDE-BEARING HYDROTHERMAL FLUIDS (350-650 °С, 1000 - 1500 BAR)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The coupled solubility of Cu(cr) and Ag(cr) was measured in acidic chloride solutions at 350 °С/1000 bar, 450 °С/1000 bar and 653 °С/1450 bar in a wide range of chloride concentrations (0.02m HCl + (0-15m) NaCl). The experiments were performed using autoclave (350, 450 °С) and ampoule (653 °С) techniques, the dissolved metal concentrations were measured after quenching the experimental system. The equilibrium constants of the reaction combining the dominant forms of transport of the metals are determined
Cu(cr) + AgCl2- = Ag(cr) + CuCl2-                                       K°(Cu-Ag) .           
The calculated reaction constant is independent of chloride concentration. It is known that AgCl2- predominates in the studied chloride concentration range. Therefore, the main cupper form of occurrence is CuCl2- in all experimental fluids with chloride content up to 47 wt.%, which is close to the NaCl saturation limit. The constant of the coupled Cu and Ag solubility was determined for the experimental PT-parameters as lg K°(Cu-Ag) = 2.65±0.20 (350 °С/1000 bar), 2.28±0.10 (450 °С/1000 bar), 1.49±0.34 (653 °С/1450 bar). These data, together with values from the literature for temperatures from 200 to 900 °С and pressure up to 2000 bar were fitted to the density model equation: lg K°(Сu-Ag) = 1.066 + 1.108∙103∙T(K)-1 + 3.585lgd(w) – 1.443∙lg d(w)103T(K)-1, where d(w) is the pure water density. According to these data, copper is much more soluble in chloride solutions compared to silver, but the difference in the solubility decreases with the temperature increase. Reliable literature data on the silver solubility constant allow to calculate the copper solubility one
Cu(к) + HCl° + Cl- = CuCl2-+ 0.5H2(р-р)                                  K°(Cu) ,
lg K°(Cu) = 1.39±0.20 (350 °С, 1000 bar), 1.91±0.10 (450 °С, 1000 bar), 2.06±0.34 (653 °С, 1450 bar). The new values of K°(Cu) are combined with reliable literature data to calculate the density model parameters. The obtained density model equation can be used to calculate the copper solubility constant up to 800 °C and pressures to 2000 bar:  lg K°(Сu) = 6.889 – 3.298∙103∙T(K)-1 + 8.694∙lg d(w) – 4.807∙lg d(w)∙103∙T(K)-1. The solubility of chalcopyrite in the system with mineral buffer assemblages pyrite-hematite-magnetite and K-feldspar-muscovite-quartz is discussed.

About the authors

E. A. Rubtsova

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM RAS)

Email: boris1t@yandex.ru
Staromonetnyi per. 35, Moscow 119017, Russia.

B. R. Tagirov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM RAS)

Email: boris1t@yandex.ru
Staromonetnyi per. 35, Moscow 119017, Russia.

N. N. Akinfiev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM RAS)

Email: boris1t@yandex.ru
35, Staromonetnyi per., Moscow 119017, Russia.

V. L. Reukov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM RAS)

Email: boris1t@yandex.ru
35, Staromonetnyi per., Moscow 119017, Russia.

L. A. Korolev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM RAS)

Email: boris1t@yandex.ru
35, Staromonetnyi per., Moscow 119017, Russia

I. Yu. Nikolaeva

Lomonosov Moscow State University, Department of Geology

Email: boris1t@yandex.ru
GSP-1, Leninskie Gory, Moscow 119991, Russia.

M. E. Tarnopolskaya

Lomonosov Moscow State University, Department of Geology

Email: boris1t@yandex.ru
GSP-1, Leninskie Gory, Moscow 119991, Russia

V. A. Volchenkova

Baikov Institute of Metallurgy & Materials Science (IMET RAS)

Author for correspondence.
Email: boris1t@yandex.ru
49, Leninskii prosp., Moscow 119334, Russia

References

  1. Акинфиев Н.Н., Зотов А.В. Термодинамическое описание хлоридных, гидросульфидных и гидроксокомплексов Ag(I), Cu(I) и Au(I) в диапазоне температур 25–500°С и давлений 1–2000 бар // Геохимия. 2001. № 10. С. 1083–1099.
  2. Акинфиев Н.Н., Зотов А.В. Термодинамическое описание водных компонентов системы Cu–Ag–Cu–S–O–H в диапазоне температур 0–600°С и 1–3000 бар // Геохимия. 2010. № 7. С. 761–767.
  3. Зотов А.В., Левин К.А., Котова З.Ю., Волченкова В.А. Экспериментальное исследование устойчивости гидроксохлоридных комплексов серебра в гидротермальных растворах // Геохимия. 1982. № 8. С. 1124–1136.
  4. Зотов А.В., Тагиров Б.Р., Королева Л.А., Волченкова В.А. Экспериментальное моделирование совместного переноса Au и Pt хлоридными гидротермальными флюидами (350–450°С, 500–1000 бар) // Геология руд. месторождений. 2017. Т. 59. № 5. С. 434–442.
  5. Николаева Н.М., Еренбург А.М., Скороход Л.С. Влияние температуры на константы равновесия реакций замещения в галогенидных комплексах меди (I) // Известия Сибирского отделения АН СССР. 1974. № 7. Сер. хим. наук. Вып. 3. С. 44–48.
  6. Трофимов Н.Д. Изучение комплексообразования меди в водном флюиде методом растворимости // Конференция “Ломоносов 2021”, тезисы докладов. Секция “Геохимия”. М.: МГУ, 2021.
  7. Шваров Ю.В. HCh: Новые возможности термодинамического моделирования геохимических систем, предоставляемые Windows // Геохимия. 2008. № 8. 898–903. (Интернет-сайт программы http://www.geol.msu.ru/ deps/geochems/soft/index.html)
  8. Akinfiev N.N., Diamond L.W. Thermodynamic description of aqueous nonelectrolytes at infinite dilution over a wide range of state parameters // Geochim. Cosmochim. Acta. 2003. V. 67. P. 613–627.
  9. Alex A., Zajacz Z. The solubility of Cu, Ag and Au in magmatic sulfur-bearing fluids as a function of oxygen fugacity // Geochim. Cosmochim. Acta. 2022. V. 330. P. 93–115.https://doi.org/10.1016/j.gca.2022.03.036
  10. Anderson G.M., Castet S., Schott J., Mesmer R.E. The density model for estimation of thermodynamic parameters of reactions at high temperatures and pressures // Geochim. Cosmochim. Acta. 1991. V. 55. P. 1769–1779.
  11. Bandura A.V., Lvov S.N. The ionization constant of water over wide ranges of temperature and density // Journal of Physical Chemistry Reference Data. 2006. V. 35. P. 15–30.
  12. Berman R.G. Internally consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2 // J. Petrology. 1988. V. 29. P. 445–522.
  13. Blundy J., Afanasyev A., Tattitch B., Sparks S., Melnik O., Utkin I., Rust A. The economic potential of metalliferous sub-volcanic brines // Royal Society Open Science. 2021. V. 8. 202192.
  14. Brugger J. Etschmann B., Liu W., Testemale D., Hazemann J.-L., Emerich H., van Beek W., Proux O. An XAS study of the structure and thermodynamics of Cu(I) chloride complexes in brines up to high temperature (400 °C, 600 bar) // Geochim. Cosmochim. Acta. 2007. V. 71. P. 4920–4941.
  15. Chase M.W., Jr. NIST-JANAF thermochemical tables, fourth edition // Journal of physical and chemical reference data. Monograph No. 9. 1998. American Chemical Society. 1951 p.
  16. Ciavatta L., Iuliano M. Copper(I) chloride complexes in aqueous solution // Annali di Chimica. 1998. V. 88. P. 71–89.
  17. Crerar D.A., Barnes H.L. Ore solution chemistry V. Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 to 300°C // Economic Geology. 1976. V. 71. P. 772–794.
  18. Driesner T., Heinrich C.A. The system H2O–NaCl. I. Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000°C, 0 to 5000 bar, and 0 to 1 XNaCl // Geochim. Cosmochim. Acta. 2007. V. 71. P. 4880–4901.
  19. Fritz J.J. Chloride complexes of CuCl in aqueous solution // Journal of Physical Chemistry. 1980. V. 84. P. 2241–2246.
  20. Johnson J.W., Oelkers E.H., Helgeson H.C. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C // Computers & Geosciences. 1992. V. 18. P. 899–947.
  21. Liu W., Brugger J., McPhail D.C., Spiccia L. A spectrophotometric study of aqueous copper(I)-chloride complexes in LiCl solutions between 100°C and 250°C // Geochim. Cosmochim. Acta. 2002. V. 66. P. 3615–3633.
  22. Liu W., McPhail D.C. Thermodynamic properties of copper-chloride complexes and copper transport in magmatic-hydrothermal solutions // Chemical Geology. 2005. V. 221. P. 21–39.
  23. Liu W., McPhail D.C., Brugger J. An experimental study of copper(I)–chloride and copper(I)–acetate complexing in hydrothermal solutions between 50°C and 250°C and vapor saturated pressure // Geochim. Cosmochim. Acta. 2001. V. 65. P. 2937–2948.
  24. Murray J.L. Calculations of stable and metastable equilibrium diagrams of the Ag–Cu and Cd–Zn systems // Metallurgical and Materials Transactions A. 1984. V. 15. P. 261–268.
  25. Robie R.A., Hemingway B.S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures // U.S. Geological Survey Bulletin 2131. 1995. U.S. Government Printing Office, Washington.
  26. Schmidt C., Watenphul A., Jahn S., Schäpan I., Scholten L., Newville M.G., Lanzirotti A. Copper complexation and solubility in high-temperature hydrothermal fluids: A combined study by Raman, X-ray fluorescence, and X-ray absorption spectroscopies and ab initio molecular dynamics simulations // Chemical Geology. 2018. V. 494. P. 69–79.
  27. Seward T.M. The stability of chloride complexes of silver in hydrothermal solutions up to 350°C // Geochim. Cosmochim. Acta. 1976. V. 49. P. 1329–1341.
  28. Shvarov Y.A. A suite of programs, OptimA, OptimB, OptimC, and OptimS compatible with the Unitherm database, for deriving the thermodynamic properties of aqueous species from solubility, potentiometry and spectroscopy measurements // Applied Geochemistry. 2015. V. 55. 17–27.
  29. Sverjensky D.A., Hemley J.J., D’Angelo M.D. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria // Geochim. Cosmochim. Acta. 1991. V. 55. P. 989–1004.
  30. Tagirov B.R., Filimonova O.N., Trigub A.L., Akinfiev N.N., Nickolsky M.S., Kvashnina K.O., Chareev D.A., Zotov A.V. Platinum transport in chloride-bearing fluids and melts: insights from in situ X-ray absorption spectroscopy and thermodynamic modeling // Geochim. Cosmochim. Acta. 2019. T. 254. P. 86–101.
  31. Tagirov B.R., Trigub A.L., Filimonova O.N., Kvashnina K.O., Nickolsky M.S., Lafuerza S., Chareev D.A. Gold transport in hydrothermal chloride-bearing fluids: insights from in situ X-ray absorption spectroscopy and Ab initio molecular dynamics // ACS Earth and Space Chemistry. 2019. V. 3. P. 240–261.
  32. Tagirov B.R., Zotov A.V., Akinfiev N.N. Experimental study of dissociation of HCl from to 500°C and from 500 to 2500 bars: Thermodynamic properties of HCl(aq) // Geochim. Cosmochim. Acta. 1997. V. 61. P. 4267–4280.
  33. Wagner W., Pruss A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use // Journal of Physical Chemistry Reference Data. 2002. V. 31. P. 387–535
  34. Xiao Z., Gammons C.H., Williams-Jones A.E. Experimental study of copper(I) chloride complexing in hydrothermal solutions at 40 to 300 °C and saturated water vapor pressure // Geochim. Cosmochim. Acta. 1998. V. 62. P. 2949–2964.
  35. Zotov A.V., Diagileva D.R., Koroleva L.A. Silver solubility in supercritical fluids in a wide range of NaCl concentration (0.6–50 wt %) – experimental and thermodynamic description // ACS Earth and Space Chemistry. 2020. V. 4. 2403–2413.
  36. Zotov A.V., Kuzmin N.N., Reukov V.L., Tagirov B.R. Stability of from 25 to 1000°C at pressures to 5000 bar and consequences for hydrothermal gold mobilization // Minerals. 2018. V. 8. 286.
  37. Zotov A.V., Kudrin A.V., Levin K.A., Shikina N.D., Var’yash L.N. Experimental studies of the solubility and complexing of selected ore elements (Au, Ag, Cu, Mo, As, Sb, Hg) in aqueous solutions // Fluids in the crust. Equilibrium and transport properties; Shmulovich, K.I., Yardley, B.W.D., Gonchar, G.G., Eds. Chapman & Hall. 1995. P. 95–137.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (67KB)
3.

Download (93KB)
4.

Download (56KB)
5.

Download (150KB)
6.

Download (201KB)
7.

Download (146KB)
8.

Download (205KB)

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies