Provenance changes of the holocene deposits of Oga and Tsivolki bays (Novaya Zemlya archipelago) according to SR, ND, PB isotope data

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper is devoted to the Sr-, Nd-, Pb-isotope data obtained for two cores of bottom sediments taken in the Oga and Tsivolki bays of the Severny Island of the Novaya Zemlya archipelago. The studied sequence of sediments from Oga Bay has been accumulated over the last thousand years. The 87Sr/86Sr ratio decreases from top to bottom down the section from 0.72225 to 0.71995, the value of εNd varies from –6.1 to –5.5. The Pb isotopic composition varies within narrow limits: the 206Pb/204Pb ratio from 19.107 to 19.139, the 207Pb/204Pb ratio from 15.632 to 15.635, and the 208Pb/204Pb ratio from 38.568 to 38.635. A rapid decrease in the 87Sr/86Sr ratio at a relatively stable neodymium and lead isotope composition indicates a change in the source of the clastogenic material. This can be explained by the fact that the material of the destruction of Permian clay shales, and then the Devonian-Silurian sedimentary carbonates, first entered the area of glacier abrasion and further, respectively, into the sedimentation zone.

The sediment column from the Tsivolki Bay was formed over a little more than 10 thousand years. Based on the Sr, Nd, and Pb isotope ratios, these bottom sediments are divided into lower and upper parts: before and after 150 cm (or ~3500 years). In the lower part of the column, the 87Sr/86Sr ratio increases from 0.72055 to 0.72580, the value of εNd remains approximately the same and varies around –8.2. In the upper part, the 87Sr/86Sr ratio drops to 0.72049 in the near-surface layer; at the same time, the value of εNd increases to –6.4. At the boundary of these two units, the 206Pb/204Pb ratio abruptly changes from about 18.0 in the lower part to 19.3 in the upper part and 208Pb/204Pb from about 36.5 in the lower part to 38.7 in the upper part of the section. The change in the Sr, Nd, and Pb isotope characteristics is likely a reflection of changes in the composition of the rocks in the area where the basin was removed, which is now being eroded by the glacier.

Comparison with modern sources supplying clastic material to the Kara Sea showed that the material inputs the Oga and Tsivolki bays only from Novaya Zemlya.

全文:

受限制的访问

作者简介

I. Vishnevskaya

Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI) RAS

编辑信件的主要联系方式.
Email: vishnevskaia@geokhi.ru
俄罗斯联邦, Kosygina str., 19, Moscow, 119334

Y. Kostitsyn

Vernadsky Institute of Geochemistry and Analytical Chemistry (GEOKHI) RAS

Email: vishnevskaia@geokhi.ru
俄罗斯联邦, Kosygina str., 19, Moscow, 119334

T. Okuneva

Zavaritsky Institute of Geology and Geochemistry UB RAS

Email: vishnevskaia@geokhi.ru
俄罗斯联邦, Akademika Vonsovskogo str.,15, Ekaterinburg, 620016

N. Soloshenko

Zavaritsky Institute of Geology and Geochemistry UB RAS

Email: vishnevskaia@geokhi.ru
俄罗斯联邦, Akademika Vonsovskogo str.,15, Ekaterinburg, 620016

参考

  1. Basov V. A., Vasilenko L. V., Viskunova K. G., Korago E. A., Korchinskaya M. V., Kupriyanova N. V., Povysheva L. G., Preobrazhenskaya E. N., Pchelina T. M., Stolbov N. M., Suvorova E. B., Suprunenko O. I., Suslova V. V., Ustinov N. V., Ustrickii V. I. & Fefilova L. A. (2009). Evolution of sedimentary environments of the Barents-North Kara palaeobasins in the phanerozoic. Oil and Gas Geology. Theory and practice. 4 (1), 1–3 [in Russian].
  2. Gorshkov S. G., Alekseev V. N., Faleev V. I. (1980). Atlas of the Oceans. Arctic Ocean. M.: Nauka, 200 pp.
  3. State Geological Map of the Russian Federation, sheet S-38–40, scale 1:1000000 (1999) Editor-in-Chief Lopatin B. G., St. Petersburg Cartographic Factory VSEGEI.
  4. Dubinina E. O., Kossova S. A., Miroshnikov A.Ju., Fyaizulina R. V. (2017) Isotopic (δD, δ18O) parameters and sources of desalinated water in the Kara Sea. Oceanology, 57 (1), 38–48 [in Russian]. doi: 10.7868/S003015741701004X
  5. Korago E. A., Kovaleva G. N., Schekoldin R. A., Il’in V.F., Gusev E. A., Krylov A. A., Gorbunov D. A. (2022) Geological structure of the Novaya Zemlya Archipelago (Western Russian Arctic) and peculiarities of Eurasian Arctic tectonics. Geotectonic, 2, 21–57. doi: 10.31857/S0016853X22020035
  6. Maslov A. V., Kuznetsov A. B., Politova N. V., Shevchenko V. P., Kozina N. V., Novigatsky A. N., Kravchishina M. D., Alexeeva T. N. (2020) Distribution of trace and rare-earth elements, and Nd, Pb, And Sr isotopes in the surface sediments of the Barents Sea. Geochem. Int., 58(6), 687–703. doi: 10.1134/S0016702920060075
  7. Maslov A. V., Shevchenko V. P., Kuznetsov A. B., Stein R. (2018) Geochemical and Sr–Nd–Pb-isotope characteristics of ice-rafted sediments of the Arctic Ocean. Geochem. Int., 58 (8), 751–765. doi: 10.1134/S0016702918080050
  8. Benn D. I., Evans D. J.A. Glaciers & glaciation. Routledge, 2014.
  9. Dutton A., Carlson A. E., Long A. J., Milne G. A., Clark P. U., DeConto R., … Raymo M. E. (2015). Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science, 349 (6244), aaa4019-aaa4019. doi: 10.1126/science.aaa4019.
  10. Dyer B., Austermann J., D’Andrea W.J., Creel R. C., Sandstrom M. R., Cashman M., Rovere A., Raymo M. E. (2021) Sea level trends across the Bahamas constrain peak last interglacial ice melt. PNAS, 118, e2026839118. doi: 10.1073/pnas.2026839118.
  11. Eisenhauer A., Meyer H., Rachold V., Tütken T., Wiegand B., Hansen B. T., Spielhagen R. F., Lindemann F., Kassens H. (1999) Grain size separation and sediment mixing in Arctic Ocean sediments: evidence from the strontium isotope systematic. Chemical Geology, 158, 173–188. doi: 10.1016/S0009-2541(99)00026-1
  12. Fagel N., Innocent C., Gariepy C., Hillaire-Marcel C. (2002) Sources of Labrador Sea sediments since the last glacial maximum inferred from Nd-Pb isotopes. Geochim. Cosmochim. Acta, 66 (14), 2569–2581. doi: 10.1016/S0016-7037(02)00866-9
  13. Gartside M. (1996) Sources et inventaire du plomb anthropique dans les sediments de l’Océan Arctique profond. Département des Sciences de la Terre. Université du Québec à Montréal, Montréal, p. 79.
  14. Goswami V., Singh S. K., Bhushan R., Rai V. K. (2012), Temporal variations in 87Sr/86Sr and ɛNd in sediments of the southeastern Arabian Sea: Impact of monsoon and surface water circulation. Geochem. Geophys. Geosyst., 13, Q01001, doi: 10.1029/2011GC003802
  15. Guo L., Semiletov I., Gustafsson Ö., Ingri J., Andersson P., Dudarev O., White D. (2004) Characterizationof Siberian Arctic coastal sediments: Implications for terrestrial organic carbon export. Global Biogeochemical Cycles, 18 (1). doi: 10.1029/2003GB002087
  16. Harrison J. C., St-Onge M. R., Petrov O. V., Strelnikov S. I., Lopatin B. G., Wilson F. H., Tella S., Paul D., Lynds T., Shokalsky S. P., Hults C. K., Bergman S., Jepsen H. F., Solli A. (2011) Geological Survey of Canada, “A” Series Map 2159A, 9 sheets; 1 DVD, doi: 10.4095/287868
  17. International Bathymetric Chart of the Arctic Ocean (IBCAO). https://www.gebco.net/data_and_products/gridded_bathymetry_data/arctic_ocean/ (access from 31.03.2023)
  18. Innocent C., Fagel N., Hillaire-Marcel C. (2000) Sm-Nd isotope systematics in deep-sea sediments: Clay-size versus coarser fractions. Mar. Geol., 168, 79–87. doi: 10.1016/S0025-3227(00)00052-9
  19. Lightfoot P. C., Hawkesworth C. J., Hergt J., Naldrett A. J., Gorbachev N. S., Fedorenko V. A., Doherty W. (1993) Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia. Contrib. Mineral. Petrol., 114, 171–188. doi: 10.1007/BF00307754
  20. Lorenz H., Gee D. G., Korago E., Kovaleva G., McClelland W. C., Gilotti J. A., Frei D. (2013) Detrital zircon geochronology of Palaeozoic Novaya Zemlya – a key to understanding the basement of the Barents Shelf. Terra Nova, 25 (6), 496–503. doi: 10.1111/ter.12064
  21. Maccali J., Hillaire-Marcel C., Carignan J., Reisberg L. C. (2013) Geochemical signatures of sediments documenting Arctic sea-ice and water mass export through Fram Strait since the Last Glacial Maximum. Quat. Sci. Rev., 64, 136–15. doi: 10.1016/j.quascirev.2012.10.029
  22. Maccali J., Hillaire-Marcel C., Not C. (2018) Radiogenic isotope (Nd, Pb, Sr) signatures of surface and sea ice-transported sediments from the Arctic Ocean under the present interglacial conditions. Polar Res., 37, 1, doi: 10.1080/17518369.2018.1442982
  23. McArthur J. M., Howarth R. J., Shields G. A., Zhou Y. (2020) Chapter 7 – Strontium Isotope Stratigraphy, Editor(s): Felix M. Gradstein, James G. Ogg, Mark D. Schmitz, Gabi M. Ogg / Geologic Time Scale. Elsevier, 211–238. https://doi.org/10.1016/B978–0–12–824360–2.00007–3
  24. Meyer I., Davies G. R., Stuut J.-B.W. (2011) Grain size control on Sr-Nd isotope provenance studies and impact on paleoclimate reconstructions: An example from deep-sea sediments offshore NW Africa. Geochem. Geophys. Geosyst., 12, Q03005. doi: 10.1029/2010GC003355
  25. Millot R., Allègre C. J., Gaillardet J., Roy S. (2004) Lead isotopic systematics of major river sediments: a new estimate of the Pb isotopic composition of the Upper Continental Crust. Chem. Geol., 203, 75–90. doi: 10.1016/j.chemgeo.2003.09.002
  26. Rusakov V., Kuz’mina T., Borisov A., Gromyak I., Dogadkin D., Romashova T., Solovi’eva G., Lukmanov R. (2022) A drastic change in glacial dynamics at the beginning of the seventeenth century on Novaya Zemlya coincides in time with the strongest volcanic eruption in Peru and the Great Famine in Russia. Quat. Res., 1–14. doi: 10.1017/qua.2021.74
  27. Rusakov V. Y., Kuz’mina T.G., Krupskaya V. V., Gromyak I. N., Dogadkin D. N., Romashova T. V. (2022) Holocene history of the eastern side of Novaya Zemlya from glaciomarine sediment records in the Tsivol’ki Fjord. Boreas, 51, 859–876. doi: 10.1111/bor.12585
  28. Rutberg R. L., Goldstein S. L., Hemming S. R., Anderson R. F. (2005) Sr isotope evidence for sources of terrigenous sediment in the southeast Atlantic Ocean: Is there increased available Fe for enhanced glacial productivity? Paleoceanography, 20, PA1018. doi: 10.1029/2003PA000999
  29. Schmitt W. (2007) Application of the Sm-Nd isotope system to the late Quaternary paleoceanography of the Yermak Plateau (Arctic Ocean) (Doctoral Dissertation, LMU München). doi: 10.5282/edoc.7183
  30. Stevenson R., Poirier A., Véron A., Carignan J., Hillaire-Marcel C. (2015) Late Eocene to present isotopic (Sr–Nd–Pb) and geochemical evolution of sediments from the Lomonosov Ridge, Arctic Ocean: Implications for continental sources and linkage with the North Atlantic Ocean. C. R. Geosci., 347 (5–6), 227–235. doi: 10.1016/j.crte.2015.02.008
  31. Swärd H., Andersson P., Hilton R., Vogt C., O’Regan M. (2022) Mineral and isotopic (Nd, Sr) signature of fine-grained deglacial and Holocene sediments from the Mackenzie Trough, Arctic Canada. Arct. Alp. Res., 54 (1), 346–367. doi: 10.1080/15230430.2022.2096425
  32. Taldenkova E. (2023) Holocene history of the eastern side of Novaya Zemlya from glaciomarine sediment records in the Tsivol’ki Fjord: Comments. Boreas, 52, 139–144. doi: 10.1111/bor.12603
  33. Taylor S. R., McLennan S. M. (1985) The Continental Crust: Its Composition and Evolution. Blackwells Scientific, Oxford. 312 pp.
  34. Tütken T., Eisenhauer A., Wiegand B., Hansen B. T. (2002) Glacial-interglacial cycles in Sr and Nd isotopic composition of Arctic marine sediments triggered by the Svalbard/Barents Sea ice sheet. Mar. Geol., 182, 351–372. doi: 10.1016/S0025-3227(01)00248-1
  35. Walter H. J., Hegner E., Diekmann B., Kuhn G., Rutgers van der Loeff M. M. (2000) Provenance and transport of terrigenous sediment in the south Atlantic Ocean and their relations to glacial and interglacial cycles: Nd and Sr isotopic evidence. Geochim. Cosmochim. Acta, 64 (22), 3813–3827. doi: 10.1016/S0016-7037(00)00476-2
  36. Wooden J. L., Czamanske G. K., Fedorenko V. A., Arndt N. T., Chauvel C., Bouse R. M., King B. S.W., Knight R. J., Siems D. F. (1993) Isotopic and trace element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim. Cosmochim. Acta, 57, 3677–3704. doi: 10.1016/0016-7037(93)90149-Q

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Sampling location. (a) The position of the Novaya Zemlya archipelago in the waters of the Arctic Ocean. (b) The area of work, the blue arrows show near-surface currents (Gorshkov et al., 1980, source of the IBCAO map). (c) Sampling points in the bays of Oga (AMK-5248) and Tsivolki (AMK-5251) are shown with asterisks.

下载 (587KB)
3. Fig. 2. Distribution of Sr content and isotope ratios of Sr, Nd, Pb in the column of sediment AMK-5248 (Oga Bay). Circles indicate samples from warm stages, triangles – from cold ones, the measurement error (±2σ) is indicated by horizontal risks for the ratio 207Pb/204Pb, in other cases it does not exceed the size of the sign.

下载 (197KB)
4. Fig. 3. Diagrams of paired ratios of isotopic compositions of Sr, Nd, Pb and Sr content for rocks from the Oga Bay. The dotted line marks the intended boundary between the lower and upper parts of the section, the same divisions are marked by trend lines and an oval. Circles indicate samples from warm stages, triangles – from cold ones, numbers on graphs – sample numbers, measurement error (±2σ) is indicated by horizontal and vertical risks, where there is no sign, it does not exceed the size of the sign.

下载 (322KB)
5. Fig. 4. Distribution of Sr content and isotopic compositions of Sr, Nd, Pb in the AMK-5251 column (Tsivolki Bay). The arrows show the trends of changes in compositions, the dotted line shows the boundary of the change of the demolition source. The measurement error (±2σ) is indicated by horizontal risks in cases where it exceeds the size of the sign.

下载 (197KB)
6. Fig. 5. The position of the samples from the Gulf of Tsivolka in coordinates (a) the content of Nd–eNd, (b) 87Sr/86Sr– eNd (the dotted line separates the horizons located above and below the boundaries of the divisions proposed in the text), and (c) 206Pb/204Pb–208Pb/204Pb. The graphs show that the precipitation of the upper and lower parts of the section occupy different fields. This is a clear indication of the change of rocks at the source of the demolition.

下载 (150KB)
7. Fig. 6. Mineral composition of sediments from the cores of the Oga Bay (squares) and segments (circles), data taken from (Rusakov et al., 2022a, b), Ill – illite, Cl – chlorite, Kl – kaolinite.

下载 (104KB)
8. Fig. 7. Evolution of the Sr isotopic composition over time for the assumed source (solid line) of sedimentary rocks (a) of the Oga Bay and (b) of the Tsivolki Bay of the Novaya Zemlya archipelago.

下载 (144KB)
9. 8. Isotopic composition of sediments of the Oga and Tsivolka bays in comparison with probable sources of demolition in coordinates (a) eNd –87Sr/86Sr and (b) 208Pb/206Pb–206Pb/204Pb. Data for sediments from different provinces are taken from the following works: the southeastern coast of Novaya Zemlya and Svalbard (Tütken et al., 2002), the Yenisei and Ob Rivers (Guo et al., 2004; Schmitt, 2007), the North Pole (Eisenhauer et al., 1999), East Siberian sea, Kara sea, sea Laptev, Barents Sea, Fram Strait, Mackenzie River and the Canadian Arctic (Maccali et al., 2018), Lena River (Millot et al., 2004), Lomonosov Ridge (Stevenson et al., 2015), Beaufort Sea (Gartside, 1996); basalts Siberian trap province (Lightfoot et al., 1992; Wooden et al., 1993).

下载 (239KB)

版权所有 © Russian Academy of Sciences, 2024

##common.cookie##