Biogeochemistry of Natural Organic Compounds in Terrestrial Waters: Distribution and Variability during Climate Warming

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper discusses the distribution and origin of organic matter in natural waters with regard to the latitudinal geographic zoning in the European territory of Russia (ETR) and Western Siberia (WS) and demonstrates how conditions on the catchments and climate affect the content of autochthonous and allochthonous organic matter. Conditional coefficients of the ratios of these forms are calculated. The influence of the temperature factor on the content of autochthonous organic matter in the waters of the southern territories of the ETR and WS was proved by multivariate statistical methods of analysis. General trends and relations are identified in the distribution of lipids, proteins, and carbohydrates of the autochthonous and allochthonous organic compounds. The mechanism of biochemical transformation of bound carbohydrates of allochthonous organic compounds into free autochthonous ones via the microbial decomposition is demonstrated, which is more typical of waters in the southern regions of WS. The paper discusses how natural and climatic conditions can influence changes in concentrations of organic compounds in the lake waters and structural characteristics of these compounds (contents of aromatic and aliphatic fragments).

作者简介

T. Moiseenko

Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences

Email: marinadinu999@gmail.com
Russia 119330 Moscow, Kosygina street, 19

M. Dinu

Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences

编辑信件的主要联系方式.
Email: marinadinu999@gmail.com
Russia 119330 Moscow, Kosygina street, 19

参考

  1. Алекин О.А. (1995) Основы гидрохимии. Гидрометеорологическое издательство. Л., 1953, 296 с.
  2. Волкова С.С. (2015) Физико-химические особенности формирования состава органического вещества и карбонатной системы в малых озерах Западной Сибири: автор. дисс. кхн. Тюмень, 19 с.
  3. Ефремова Т.А., Зобкова М.В. (2019) Содержание, распределение и соотношение основных компонентов органического вещества в воде Онежского озера Труды Карельского научного центра РАН. (9), 60-75.
  4. Ладожское озеро: Past, present and future: Прошлое, настоящее, будущее (2002) / Под ред. Румянцева В.А., Драбковой В.Г. СПб. Наука, 326 с.
  5. Лозовик П.А., Морозов А.К., Зобков М.Б., Духовичева Т.А., Осипова Л.А. (2007) Аллохтонное и автохтонное органическое вещество в поверхностныхводах Карелии Водные ресурсы. 34(2), 225-237.
  6. Лозовик П.А., Мусатова М.В. (2013) Методика разделения органического вещества природных вод адсорбцией на диэтиламиноэтилцеллюлозе на автохтонную и аллохтонную составляющие. Вестник МГОУ. Сер. Естественные науки. (3), 63-68.
  7. Моисеенко Т.И., Гашкина Н.А. (2005) Факторы формирования химического состава вод малых озер. ДАН. 401(6), 802-807.
  8. Моисеенко Т.И., Гашкина Н.А., Дину М.И., Хорошавин В.Ю., Кремлева Т.А. (2017) Влияние природных и антропогенных факторов на процессы закисления вод в гумидных региона. Геохимия. (1), 41-56.
  9. Moiseenko T.I., Gashkina N.A., Dinu M.I., Khoroshavin V.Y., Kremleva T.A. (2017) Influence of natural and anthropogenic factors on water acidification in humid regions. Geochem. Int. 55(1), 84-97.
  10. Моисеенко Т.И., Гашкина Н.А., Кудрявцева Л.П. (2006) Формирование химического состава вод озер в условиях изменения окружающей среды. Водные ресурсы. 33(2), 163-180
  11. Паничева, Л.П., Кремлева Т.А., Волкова С.С. (2018) Биохимическая трансформация нефтяных углеводородов в водах Западной Сибири. Вести Тюменского Государственного Университета. (5), 6-22
  12. Agren A., Buffam I., Jansson M., Laudon H. (2007) Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. J. Geophys. Res. 112.
  13. Algesten G., Sobek S., Bergstro A.K., Agren A., Tranvik L.J., Jansson M. (2003) Role of lakes for organic carbon cycling in the boreal zone. Global Change Biol. (10), 141-147.
  14. Amon R.M.W., Benner R. (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. (41), 41-51.
  15. Bade D.L., Carpenter S.R., Cole J.J., Pace M.L., Kritzberg E., Van de Bogert M.C., Cory R.M., McKnight D.M. (2007) Sources and fates of dissolved organic carbon isotope additions. Biogeochemistry. 84. 115-129.
  16. Chupakov A., Chupakova A., Moreva O, Shirokova L., Zabelina S.A., Vorobieva Y, Klimov S., Brovko O.S., Pokrovsky O.S. (2017) Allochthonous and autochthonous carbon in deep, organicrich and organicpoor lakes of the European Russian subarctic. Boreal Environment research. (22), 213-230
  17. Cory R.M., McKnight D.M., Chin Y.P., Miller P., Jaros C.L. (2007) Chemical characteristics of fulvic acids from Arctic surface waters: microbial contributions and photochemical transformations. J. Geophys. Res. Biogeosci. 112.
  18. Crapart C., Andersen T., Hessen D.O., Valiente N., Vogt R.D. (2021) Factors governing biodegradability of dissolved natural organic matter in Lake. Water. (13), 2210.
  19. Denfeld B.A., Wallin M.B., Sahlée E., Sobek S., Kokic J.,Chmiel H.E., Weyhenmeyer G.A. (2015) Temporal andspatial carbon dioxide concentration patterns in a smallboreal lake in relation to icecover dynamics. Boreal Env. Res. (20), 679-692.
  20. Finstad A., Andersen T., Larsen S., Tominaga K., Blumentrath S., de Wit H.A., Tømmervik H., Hessen D.O. (2016) From greening to browning: Catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes. Scient. Repor. 6(1), 31944
  21. Hansell D.A., Carlson C.A., Suzuki Y. (2002) Dissolved organic carbon export with North Pacific Intermediate Water formation. Glob. Biogeochem. Cycle (16), 1007.
  22. Henriksen K., Kemp W.M. (1988) Nitrification in estuarine and coastal marine sediments In: Blackburn T.H., Sorensen J. (eds) Nitrogen cycling in coastal marine environments. Wiley & Sons, Chichester, 207-240
  23. Kellerman A.M., Kothawala D.N., Dittmar T., Tranvik L.J. (2015) Persistence of dissolved organic matter in lakesrelated to its molecular characteristics. Nature Geoscience. (8), 454-457.
  24. Kim S., Kaplan L.A., Hatcher P.G. (2006) Biodegradable dissolved organic matter in a temperate and a tropical stream determined from ultra-high resolution mass spectrometry. Limnol. Oceanogr. (51), 1054-1063.
  25. Koehler B., von Wachenfeldt E., Kothawala D., Tranvik L.J. (2012) Reactivity continuum of dissolved organic carbon decomposition in lake water. J. Geophys. Res. 117.
  26. Kortelainen P. (1993) Content of total organic carbon in Finnishlakes and its relationship to catchment characteristics. Can. J. Fish. Aquat. Sci. (50), 1477-1483.
  27. Linnik P.N., Ivanechko Ya.S., Linnik R.P., Zhezherya V.A. (2013) Humic substances in surface waters of the Ukraine. Russ. J. Gen. Chem. 83(13), 2715-2730.
  28. Liu F. (2020) Dissolved organic carbon concentration and biodegradability across the global rivers: A meta-analysis Sci. of The Tot. Env. 818, 151828
  29. Matilainen A., Gjessing E.T., Lahtinen T., Hed L., Bhatnagar A., Sillanpaa M. (2011) An overview of the methods used in the characterization of natural organic matter (NOM) in relation to drinking water treatment. Chemosphere. 83. 1431-1442.
  30. Priscu J., Foreman C.M. (2008) Encyclopedia of Inland Waters.
  31. Prokushkin A.S., Pokrovsky O.S., Shirokova L.S., Korets M.A., Viers J., Prokushkin S.G., Amon R.M.W., Guggenberger G., McDowell W.H. (2011) Sources and the fl ux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau Environ. Res. Lett. (6), 45212-45225.
  32. Rantala M.V., Nevalainen L., Rautio M., Galkin A., Luoto T.P. (2016) Sources and controls of organic carbon in lakes across the subarctic treeline. Biogeochem. (129), 235-253.
  33. Shimotori K., Watanabe K., Hama T. (2012) Fluorescence characteristics of humic-likefluorescent dissolved organic matter produced by various taxa of marine bacteria. Aquat. Microb. Ecol. (65), 249-260.
  34. Town R.M., Filella M.A. (2000) comprehensive systematic compilation of complexation parameters reported for trace metals in natural waters. Aquat. Sci. 62(3), 252-295.
  35. Wauthy M., Rautio M., Christoffersen K.S., Forsström L., Laurion I., Mariash H.L., Peura S., Vincent W.F. (2018) Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw. Limnology and Oceanography Letters. 3(3), 186-198.
  36. Wilkinson K.J., Joz-Roland A., Buffl J. (1997) Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters Limnol. Oceanogr. 42(8), 1714-1724
  37. Yamashita Y., Tosaka T., Bamba R., Kamezak R.,Goto S., Nishioka J., Yasuda I., Hirawake T., Oide J., Obata H., Ogawa H. (2021)Widespread distribution of allochthonous fluorescent dissolved organic matter in the intermediate water of the North Pacific Progress in Oceanography. 191.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (243KB)
3.

下载 (72KB)
4.

下载 (33KB)

版权所有 © Т.И. Моисеенко, М.И. Дину, 2023

##common.cookie##