Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 69, No 4 (2024)

Cover Page

Full Issue

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Articles

Geochemistry of platinum group elements in the ocean

Berezhnaya E.D., Dubinin A.V.

Abstract

The review considers the current state of research on the geochemistry of platinum group elements (PGEs) in the ocean. The behavior of PGE in the aquatic environment is determined by their degree of oxidation, the ability to change it, and complexation. The difference in chemical properties of PGEs leads to the fact that in the ocean they do not retain group behavior and fractionate significantly. This is their characteristic feature, along with their ultra-low contents. The paper describes the sources of PGEs entering the ocean, their behavior in the river-sea mixing zone, and their distribution in seawater. The processes of PGE accumulation in sediments, sulfide and ferromanganese sediments of the ocean are considered. Possible mechanisms of PGE accumulation on ferromanganese oxyhydroxides are discussed.

Geohimiâ. 2024;69(4):323-340
pages 323-340 views

Deformation microstructure, metallic iron and inclusions of hollow negative crystals in olivine from Seimchan pallasite: evidence of solid-phase reduction of Fe2+

Khisina N.R., Badyukov D.D., Lorenz K.A., Palyanov Y.N., Kupriyanov I.N., Schkursky B.B.

Abstract

Olivine grains from the Seymchan pallasite were studied using optical microscopy, Raman spectroscopy and scanning electron microscopy (SEM). Olivine is characterized by the presence of hollow straight channels <1 µm wide and inclusions of hollow negative crystals of prismatic habit 1–2 µm thick. The channels are oriented parallel to [001] of olivine and developed along [001] screw dislocations. The elongation axes of negative crystals are also oriented parallel to [001]. In the channels, hollow segments alternate with segments filled with metallic iron. Negative crystals are crystallographically faceted voids in olivine; the largest of them contain inclusions of metallic iron. The rectilinear configuration and crystallographic orientation of the channels correspond to the characteristics of [001] screw dislocations, which allows us to consider [001] dislocations as channel precursors. The data obtained demonstrate for the first time the evolution of [001] dislocations in olivine as a result of the reduction of divalent iron during the interaction of olivine with the host FeNi metal. A model is proposed for the transformation of dislocations with the formation of channels and hollow negative crystals in Seymchan olivine in accordance with one of the reactions:

2Fehost+ (Mg1−nFen)2SiO4 = 2n[FeO]host + [nSiO2 + 2nFe0 + (1 − n)Mg2SiO4 + 2nv2− + 2nv2+ ]ol,

2Fehost+ (Mg1−nFen)2SiO4 = 2n[FeO]host + [nMgSiO3 + nFe0 + (1 − n)Mg2SiO4 + nv2− + nv2+ ]ol.

According to the model, at T > 1000°C the reduction process is accompanied by an increase in the concentration of Fe0 and associated vacancies (v2- and + v2+) in dislocation zones. Voids in channels and in negative crystals are products of the annihilation of anionic and cationic structural vacancies having opposite charges. Phase association formed in this solid-phase transformation of olivine corresponds to the either OSI (olivine → SiO2 + 2Fe0) or OPI (olivine → pyroxene + Fe0) buffer equilibrium. The results can be used for reconstruction of the thermal and shock histories of different types of pallasites.

Geohimiâ. 2024;69(4):341-353
pages 341-353 views

Formation of richterite in the enstatite–diopside system in the presence of the K2CO3–Na2CO3–CO2–H2O fluid in application to the processes of mantle metasomatism

Limanov E.V., Butvina V.G., Safonov O.G., Spivak A.V., Van K.V., Vorobey S.S.

Abstract

The paper presents results of studying the formation reaction of K–Na-richterite in the enstatite + diopside association with the participation of the K2CO3–Na2CO3–CO2–H2O fluid at 3 GPa and 1000°C, simulating the formation of this mineral in peridotites of the upper mantle. Richterite formation depends on the (H2O + CO2) / (K2CO3 + Na2CO3) and K2CO3 / Na2CO3 ratios in the starting material. A high concentration of alkaline components in the fluid leads to the decomposition of clinopyroxene, the formation of olivine, as well as a change in the component composition of pyroxene and amphibole. Fluids with a high concentration of the potassium component are responsible for the formation of K-richterite, similar in composition to that formed in metasomatized peridotites of the upper mantle. In some cases, such a fluid leads to the decomposition of amphibole and stabilization of the alkaline melt. With an increase in the activity of the sodium component, the fluid contains richterite, which is similar in composition to richterite from lamproites. The obtained patterns can be used to assess the activities of fluid components and the conditions for the formation of K-richterite. To replenish the data bank of Raman spectra of minerals, the largest and most homogeneous amphibole crystals of different compositions were studied.

Geohimiâ. 2024;69(4):354-362
pages 354-362 views

Features of crystallization of andesite melt at moderate hydrogen pressures (experimental study)

Persikov E.S., Bukhtiyarov P.G., Shaposhnikova O.Y., Aranovich L.Y., Nekrasov A.N.

Abstract

Important problems of magma differentiation, formation of native metals and ore formation processes in the earth's crust are increasingly associated with the active participation of hydrogen. In this paper, new experimental data on the crystallization of andesite melts at high temperatures (900–1250°C) and hydrogen pressures (10–100 MPa) have been obtained, which clarify the possible role of hydrogen in the processes occurring in andesite melts in the earthʼs crust and during volcanism under strongly reduced conditions (f(O2) = 10–17–10–18). In crystallization experiments, it was found that the crystal compositions (pyroxenes and plagioclases) formed in experiments on crystallization of andesite melt under hydrogen pressure closely correspond to the crystal compositions of lava flows of Avacha volcano in Kamchatka. This result can be considered as an experimental confirmation of the participation of hydrogen in the volcanic process.

Geohimiâ. 2024;69(4):363-369
pages 363-369 views

Features of loparite dissolution in aluminosilicate melts (experimental investigation)

Suk N.I., Kotelʹnikov A.R., Viryus A.A.

Abstract

The solubility of loparite (Na, Ce, Ca)2(Ti, Nb)2O6) in aluminosilicate melts of various compositions was experimentally studied at T = 1200 and 1000°C and P = 2 kbar under dry conditions and in the presence of 10 wt. % H2O in a high gas pressure vessel with a duration of 1 day. The initial material was previously melted glasses of malignite, urtite and eutectic albite-nepheline composition, as well as natural loparite of the Lovozero massif. The dependence of the solubility of loparite on the composition of the aluminosilicate melt (Ca/(Na + K), (Na + K)/Al) has been revealed. Partition coefficients of a number of elements (Ti, Nb, Sr, REE) between silicate melt and loparite crystals (Ki = Cimelt/Cilop) were estimated.

Geohimiâ. 2024;69(4):370-383
pages 370-383 views

Study of roméite solubility in the fluid immiscibility region of the NaF–H2O system at 800°C, 200 MPa

Redʹkin A.F., Kotova N.P., Shapovalov Y.B., Nekrasov A.N.

Abstract

New data on roméite (CaNa)Sb2O6F solubility in the NaF–H2O system of P–Q type in a wide range of sodium fluoride concentrations (from 0 to 25 wt. % NaF) have been obtained. The concentration of antimony, in equilibrium with roméite and fluorite, in the range of NaF concentrations from 1 to 8 mol kg−1 H2O (25 wt. % NaF), is in the interval of 0.02–0.2 mol kg−1 H2O. According to the data obtained, the concentration of antimony in the L1 and L2 phases in the fluid immiscibility region of the NaF–H2O system at 800°C, 200 MPa and f(O2) = 50 Pa, specified by the Cu2O–CuO buffer, is 0.4 and 2.1 wt. % Sb, respectively. For the first time, during these experiments, the formation of fluorite skeletal forms and an intermetallic compound Pt5Sb of a hexagonal crystal system with lattice parameters (LP): a = b = 4.56(4), c = 4.229(2) Å, α = β = 90°, γ = 120° was established. Pentaplatinum antimonide is formed on the surface of Pt ampoules at 800°C, P = 200 MPa and f(O2) ≤ 10−3.47 Pa (Cu–Cu2O buffer) in experiments on the incongruent dissolution of romeite, which causes a sharp decrease (more than 1000 times) the concentration of antimony in solution.

Geohimiâ. 2024;69(4):384-392
pages 384-392 views

Effect of pH, CO2 and organic ligands on the kinetics of talc and lizardite dissolution

Karaseva O.N., Lakshtanov L.Z., Khanin D.A., Proskuryakova A.S.

Abstract

Natural sheet magnesium silicates are potential sources of divalent cations, which are necessary for the mineralization of CO2 in the carbonates. In order to study the influence of inorganic (HCO3) and organic (oxalate and citrate) ligands on the kinetics of dissolution of talc and serpentine, experiments were performed in a flow-through reactor at 25°C. Dissolution rates of natural silicates r (mol cm−2 s−1) in solutions of various compositions were calculated at the stationary stage of dissolution after a rapid initial stage, which is characterized by the formation of a surface leached layer depleted in magnesium. The presence of ligands increases the dissolution rate of magnesium silicates due to the formation of surface complexes, which leads to separation of magnesium from the surface and transition into solution. Initial incongruent stage may be the most promising for the development of carbonation technologies, since the minimum removal of the network-forming elements prevents the undesirable formation of secondary minerals (for example, clays), which exclude divalent cations from the carbonation process and greatly reduce the permeability of rocks.

Geohimiâ. 2024;69(4):393-403
pages 393-403 views

The influence of atmospheric circulation on the seasonal dynamics of the chemical composition of snow cover in the Pechora-Ilychsky reserve

Vasilevich M.I., Smirnov N.S.

Abstract

The analysis of the layer-by-layer dynamics of snow chemical parameters in one of the observation points in the Pechora-Ilych biosphere reserve (Yaksha village) in the winter period 2019–2020 was carried out. It is shown that the chemical composition of atmospheric precipitation is more affected by long-range transport of substances. The peculiarities of atmospheric circulation and the regions from which air masses are transferred determine the saturation of precipitation with certain chemical components. The calculation of the trajectories of reverse transport of air masses allowed us to show the regions where air masses can form that come to the research area, carry substances and potentially form the chemical composition of precipitation. It is shown that the calculation of trajectories allows us to estimate the regions that are sources of pollutants entering the atmosphere. In general, this method of studying the chemical composition of snow is very informative and allows you to better understand the factors of its formation.

Geohimiâ. 2024;69(4):404-416
pages 404-416 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».