NEON AS A CRITERION FOR NOBLE GAS DISTRIBUTION BETWEEN GAS ACCUMULATIONS AND EDGEWATER

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The dependence of the isotopic composition of Ne on the partial pressure of Ne, N2 and the ratio of N2 /Ne is analyzed for the first time. The scale of the influence of groundwater on the content and isotopic composition of noble gases in CO2, N2 and CH4 gas reservoirs is also estimated. It is shown that the partial pressure of Ne in gas accumulations increases in the range: CO2 – CH4 – N2. The CO2 gas accumulations are characterized by the mantle isotopic composition of neon, and the N2 gas accumulations are dominated by a mixture of atmospheric and crustal neon (20Ne/22Ne is in the range of 8.9–10.2; 21Ne/22Ne 0.040–0.083). The initial concentrations and isotopic composition of Ne and, obviously, other noble gases depend on the conditions of formation of the gas phase that enters the reservoir. Subsequently, the partial pressure of Ne in the CO2 and CH4 gas accumulations increases, and the partial pressure of Ne in the N2 gas accumulations decreases, presumably due to gas exchange with groundwater. A model of gas exchange between gas accumulations and groundwater is proposed, which makes it possible to estimate the distribution of noble gases between them: (1) CO2 enters reservoirs with negligibly low (0.008 Pa) partial pressures of mantle Ne. Therefore, the admixture of Ne from groundwater can reach 90 % in them; (2) On the contrary, N2 deposits have an atmospheric isotopic composition of Ne with the addition of a nucleogenic (crustal) component and a partial pressure higher than in the atmosphere. The ancient Cl–Ca brines at the reservoir pressure below 300 bar are the most likely source of this N2 gas phase; (3) The isotopic composition of Ne in CH4 accumulations corresponds to the microbial methane which is formed in near–surface conditions (the environment enriched in atmospheric gases), while thermogenic methane is formed at greater depths. Probably, major part of the Ne and N2 in the thermogenic CH4 accumulations are the result of the gas exchange with Cl–Ca brines. In general, the isotopic composition of Ne in CH4 accumulations reflect the mixing of microbial and thermogenic CH4 on migration routes to the surface.

About the authors

V. V. Tikhomirov

Saint Petersburg State University, Institute of Earth Sciences

10th Line V.O., 33-35, St. Petersburg, 199178 Russia

V. G. Tikhomirova

Saint Petersburg State University, Institute of Earth Sciences

10th Line V.O., 33-35, St. Petersburg, 199178 Russia

References

  1. Бобров В.Е., Тихомиров В.В. (2003) Гелий как критерий формирования состава нефтей Волго-Уральского нефтегазоносного бассейна. Вестник Санкт-Петербургского университета. Серия 7. Выпуск 3 (23), 25–35.
  2. Верховский A.Б. (1981) Изотопный состав Ar, Ne, Xe в природных газах. Происхождение и формирование состава природных газов по данным изотопной геохимии. Л.: ВНИГРИ. 36–49.
  3. Воронов А.Н., Махмудов А.Х., Несмелова З.Н., Петровская Н.Л., Прасолов Э.М., Рогозина Е.А., Тихомиров В.В., Тихомирова В.Г., Якуцени В.П. (1976) Природные газы осадочной толщи. Л., Недра, 344 с.
  4. Воронов А.Н., Прасолов Э.М., Тихомиров В.В. (1974) Соотношения радиогенных изотопов аргона и гелия в газовых залежах. Геохимия (12), 1842–1855.
  5. Галимов Э.М. (1973) Изотопы углерода в нефтегазовой геологии. М.: Недра, 384 с.
  6. Козлов А.Л. (1949) Подземное окисление углеводородов. Материалы научно-исследовательской геологической конференции по нефти, озокериту и горючим газам Украинской ССР, Киев: АН СССР, 68–94.
  7. Козлов А.Л. (1950) Проблемы геохимии природных газов. М.: Гостоптехиздат, 167 с.
  8. Кореневский С.М. (1973) Комплексные минеральные ресурсы галоидных формаций. М.: Недра, 300 с.
  9. Лондон Э.Е. (1975) О формировании регионального фона газонасыщения пластовых вод. Геология нефти и газа. (8), 24–30.
  10. Миловский А.В., Волынец В.Ф. (1966) Азот в метаморфических породах. Геохимия. (8), 936–942.
  11. Поливанова А. (1981) Образование скоплений метана и сероводорода в зависимости от распространения подземных рассолов. Водорастворенные газы нефтегазоносных бассейнов. М.: Наука, 23–28.
  12. Прасолов Э.М. (1990) Изотопная геохимия и происхождение природных газов. Л.: Недра, 283.
  13. Савченко В.П. (1935) К вопросу о геохимии гелия. Природные газы. (9), 53–108.
  14. Синявский Е.И., Бусел Г.Ф. (1967) Залежи биогенного азотного газа – показатель вертикальной миграции нефти и подземных вод. Геология нефти и газа. (4), 47–50.
  15. Тихомиров В.В. (1980) О парагенезисе соленосных толщ и ассоциирующих с ними залежей молекулярного азота. Литология и полезные ископаемые. (3), 108–115.
  16. Тихомиров В.В., Баркан Е.С. (1981) Изучение процесса газообразования по содержанию инертных компонентов в свободных газах. Геология нефти и газа. (12), 49–52.
  17. Тихомиров В.В. (1991) Гелиеносность пластовых газов как критерий их формирования. Геохимия. (5), 652–666.
  18. Тихомиров В.В, Яковлев О.Н., Яшенкова Л.К. (2001) Гелиеносность пластовых газов на территории Тихо- океанского подвижного пояса и сопредельных древних платформ. Вестник Санкт-Петербургского университета. Серия 7, выпуск 4 (31), 3–15.
  19. Тихомиров В.В. (2014) Молекулярный азот в солях и подсолевых флюидах Волго-Уральского бассейна. Геохимия. (8), 689–703.
  20. Tikhomirov V.V. (2014) Molecular nitrogen in salts and subsalt fluids in the Volga-Ural Basin. Molecular nitrogen in salts and subsalt fluids in the Volga-Ural Basin. Geochem. Int. 52(8), 628–642.
  21. Якуцени В.П. (1968) Геология гелия. Л.: Недра, 232 с.
  22. Якуцени В.П., Махмудов А.Х., Тихомиров В.В., Воронов А.Н. (1968) Условия существования залежей нефти и газа по данным об инертных газах. Л.: ВНИГРИ, 258, 79 с.
  23. Якуцени В.П., Воронов А.Н., Махмудов А.Х., Тихомирова В.Г. (1969) Закономерности распределения гелия в осадочной толще и условия формирования его промышленных скоплений. Геохимия. (2), 192–200.
  24. Якуцени В.П., Воронов А.Н., Тихомиров В.В. (1970) К вопросу определения возраста газовых залежей по гелий-аргоновому соотношению. Бюллетень комиссии по определению абсолютного возраста геологических формаций, вып. IX, 111–115.
  25. Akhbari D., Hesse M.A. (2017) Causes of underpressure in natural CO2 reservoirs and implications for geological storage. Geology. 45(1), 47–50.
  26. Akhbari D. (2018) Under-pressure in the Bravo Dome natural CO2 field and its implications for geological CO2 storage (GCS). PhD Dissertation, The University of Texas at Austin, 140 p.
  27. Allis R.G., Chidsey T., Gwynn W., Morgan C., White S.P., Adams M., Moore J. (2001) Natural CO2 reservoirs on the Colorado Plateau and Southern Rocky Mountains: candidates for CO2 sequestration. Proc. 1st National Conference on Carbon Sequestration, May 14–17, U. S. Department of Energy National Energy Technology Laboratory, 19 p.
  28. Baars D.L. (2000) The Colorado Plateau: A Geologic History. University of New Mexico Press. 272 р.
  29. Baines Sh.J., Worden R.H. (2004). Geological Storage of Carbon Dioxide. Geol. Soc. Spec. Publ. 233(1), 59–85.
  30. Ballentine C.J., Lollar B.S. (2002) Regional groundwater focusing of nitrogen and noble gases into the Hugoton – Panhandle giant gas. eld, USA. July. Geochim. Cosmochim. Acta 66(14), 2483–2497. doi: 10.1016/S0016-7037(02)00850-5
  31. Ballentine C.J., O’Nions R.K. (1991) The nature of mantle neon contributions to Vienna Basin hydrocarbon reservoirs. Earth Planet. Sci. Lett. 113(4), 553–567.
  32. Ballentine C.J., & O’Nions R.K. (1992). The nature of mantle neon contributions to Vienna Basin hydrocarbon reservoirs. Earth Planet. Sci. Lett. 113(4), 553–567.
  33. Ballentine C.J., O’Nions R.K., Oxburgh E.R., Horvath F., Deak J. (1991) Rare-gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth Planet. Sci. Lett. 105(1–3), 229–246.
  34. Ballentine C.J., O’Nions R.K. (1994) The use of natural He, Ne and Ar isotopes to study hydrocarbon related fluid provenance, migration and mass balance in sedimentary basins. Geological Society, London, Special Publications, 78, 347–361.
  35. Ballentine C.J., O’Nions R.K., Coleman M.L. (1996) A Magnus opus: Helium, neon, and argon isotopes in a North Sea oilfield. Geochim. Cosmochim. Acta. 60(5), 831–849.
  36. Ballentine C.J. (1997) Resolving the mantle He/Ne and crustal 21Ne/22Ne in well gases. Earth Planet. Sci. Lett. 152, 233–249.
  37. Ballentine C.J., Schoel M., Coleman D., Cain B.A. (2001) 300-Myr-old magmatic CO2 in natural gas reservoirs of the west Texas Permian basin. Nature. 409, 227–231.
  38. Ballentine C.J., Burgess R., Bernard M. (2002) Tracing Fluid Origin, Transport and Interaction in the Crust, Rev. Mineral. Geochem. 47(1), 539–614.
  39. Ballentine C.J., Burnard P.G. (2002) Production, Release and Transport of Noble Gases in the Continental Crust, Rev. Mineral. Geochem. 47(1), 481–538.
  40. Ballentine C.J., Sherwood L.B. (2002) Regional groundwater focusing of nitrogen and noble gases into the Hugoton-Panhandle giant gas field, USA. Geochim. Cosmochim. Acta 66(14), 2483–2497.
  41. Ballentine C.J., Marty B., Sherwood L.B., Cassidy M. (2005) Neon isotopes constrain convection and volatile origin in the Earth’s mantle, Nature. 433, 33–38.
  42. Ballentine C.J., Holland G. (2008) What CO2 well gases tell us about the origin of noble gases in the mantle and their relationship to the atmosphere, Phil. Trans. R. Soc. A, 366, 4183–4203.
  43. Barry P.H., Lawson M., Meurer W.P., Warr O., Mabry J.C., Byrne D.J., Ballentine C.J. (2016) Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field. Geochim. Cosmochim. Acta. 194, 291–309.
  44. Battani A., Sarda P., Prinzhofer A. (2000) Basin scale natural gas source, migration and trapping traced by noble gases and major elements: the Pakistan Indus basin. Earth Planet. Sci. Lett. 181(1–2), 229–249.
  45. Berndt M.E., Allen D.E., Seyfried W.E. (1996) Reduction of CO2 during serpentinization of olivine at 300 °C, and 500 bar. Geology. 24(4), 351–354.
  46. Bickle M., Kampman N., Wigley M. (2013) Natural analogues. Rev. Mineral. Geochem. 77(1), 15–71.
  47. Bosch A., Mazor E. (1988) Natural gas association with water and oil as depicted by atmospheric noble gases: case studies from the southeastern Mediterranean Coastal Plain. Earth Planet. Sci. Lett. 87, 338–346.
  48. Brennwald M.S., Vogel N., Scheidegger Y., Tomonaga Y., Livingstone D.M., Kipfer R. (2013) Noble Gases as Environmental Tracers in Sediment Porewaters and Stalagmite Fluid Inclusions. The Noble Gases as Geochemical Tracers, (ed. Pete Burnard) Springer Science & Business Media, 123–153.
  49. Broadhead R.F. (2005) Helium in New Mexico – Geologic distribution, resource demand, and exploration possibilities. New Mexico Geology. 27(4), 93–101.
  50. Broadhead R.F. (2019) Carbon Dioxide in the Subsurface of Northeastern New Mexico. Geology of the Raton-Clayton Area. 101–108.
  51. Brown A. (2019) Origin of helium and nitrogen in the Panhandle–Hugoton field of Texas, Oklahoma, and Kansas, United States. AAPG Bull., 103(2), 369–403.
  52. Cappa J., Rice D. (1995) Carbon dioxide in Mississippian rocks of the Paradox Basin and adjacent areas, Colorado, Utah, New Mexico and Arizona. AAPG Bull. No. 2000-H, 21.
  53. Cassidy M.M., Ballentine C., Hesse M. (2013) Loss of CO2 gas into formation water at the natural CO2 deposit of Bravo Dome, New Mexico, USA: AAPG, Search and Discovery, Article No. 80350, 29 p
  54. Clever L. (1979) Helium and Neon. IUPAC Solubility Data Series (ed. A. S. Kertes), Vol. I. Pergamon Press. 393 p.
  55. Craddock W.H., Blondes M.S., DeVera C.A., Hunt A.G. (2017) Mantle and crustal gases of the Colorado Plateau: Geochemistry, sources, and migration pathways. Geochim. Cosmochim. Acta. 213(15), 346–374.
  56. Danabalan D. (2017) Helium: Exploration Methodology for a Strategic Resource. PhD Thesis, Durham University United Kingdom, 295.
  57. DePaolo D.J., Cole D.R., Navrotsky A., Bourg I.C. (2018) Geochemistry of Geologic CO2 Sequestration. Rev. Mineral. Geochem. 77(1), 1–14.
  58. Driskill D.L. (2008) Analyses of Natural Gases, 2005–2007. U. S. Department of the Interior, Bureau of Land Management. Technical Note 427, 199 pp.
  59. Dubacq B., Bickle M.J., Wigley M., Kampman N., Ballentine C.J., Sherwood Lollar B. (2012) Noble gas and carbon isotopic evidence for CO2-driven silicate dissolution in a recent natural CO2 field. Earth Planet. Sci. Lett. 341–344, 10–19.
  60. Eberhardt P., Engster O., Marti K., (1965) A redetermination of the isotopic composition of atmospheric neon, Z. Naturforsch, 20(4), 623–624.
  61. Elliot T., Ballentine C.J., O’Nions R.K., Ricchiuto T. (1993) Carbon, helium, neon and argon isotopes in a Po basin (northern Italy) natural gas field. Chem. Geol. 106(3–4), 429–440.
  62. Emerson D.E., Stroud L., Meyer T.O. (1966) The isotopic abundance of neon from helium-bearing natural gases. Geochim. Cosmochim. Acta. 30(9), 847–854.
  63. Eppink J., Heidrick T.L., Alvarado R., Marquis M. (2014) Subsurface Sources of CO2 in the Contiguous United States, v. 1. Discovered Reservoirs. U.S. DOE, NETL, Open-File Report,1637, 89 pp.
  64. Gage B.D., Driskill D.L. (2002) Analyses of Natural Gases, 1998–2001, U. S. Department of the Interior, Bureau of Land Management. Technical Note 412, 173 p.
  65. Gage B.D., Driskill D.L. (2005) Analyses of Natural Gases, 2002–2004, U. S. Department of the Interior, Bureau of Land Management. Technical Note 418, 246.
  66. Gilbert K., Bennett P.C., Wolfe W., Zhang T., Roma- nak K.D. (2016) CO2 solubility in aqueous solutions containing Na+, Ca2+, Cl, and : the effects of electrostricted water and ion hydration thermodynamics. Appl. Geochem. 67, 59–67.
  67. Gilfillan S.M.V., Ballentine C.J., Holland G., Blagburn D., Sherwood Lollar B., Stevens S., Schoell M., Cassidy M. (2008) The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces, USA. Geochim. Cosmochim. Acta. 72(4), 1174–1198.
  68. Gilfillan S.M.V, Lollar B.S., Holland G., Blagburn D., Stevens S., Schoell M., Cassidy M., Ding Z., Zhou Z., Lacrampe-Couloume G., Ballentine C.J. (2009) Solubility trapping in formation water as dominant CO2 sink in natural gas fields. Nature. 458, 614–618.
  69. Gilfillan S.M.V., Wilkinson M., Haszeldine R.S., Shi-pton Z.K., Nelson S.T., Poreda R.J. (2011) He and Ne as tracers of natural CO2 migration up a fault from a deep reservoir. Int. J. Greenhouse Gas Control 5(6), 1507–1516.
  70. Gilfillan S.M.V., Ballentine C.J. (2018) He, Ne and Ar ‘snapshot’ of the subcontinental lithospheric mantle from CO2 well gases. Chem. Geol. 480, 116–127.
  71. Gold T., Held M. (1987) Helium-nitrogen-methane systematics in natural gases of Texas and Kansas. J. Petrol. Geology. 10(4), 415–424.
  72. Haendel D., Mühle K., Nitzsche H.M., Stiehl G., Wand U. (1986) Isotopic variations of the fixed nitrogen in metamorphic rocks. Geochim. Cosmochim. Acta. 50(5), 749–758.
  73. Halford D.T. (2018) Isotopic Analyses of Helium from Wells Located in the Four Corners Area, Southwestern, USA. PhD thesis, Colorado School of Mines, 353 p.
  74. Hardie L.A., 1983. Origin of CaCl2 Brines by Basalt-Seawater Interaction: Insights Provided by Some Simple Mass Balance Calculations, Contrib. Mineral Petrol. 82(2–3), 205–213.
  75. Hardie L.A., 1990. The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites. Am. J. Science. 290, 43–106.
  76. Heath J.E., Lachmar T.E., Evans J.P., Kolesar P.T., Williams A.P. (2009) Hydrogeochemical Characterization of leaking, carbon dioxide–charged fault zones in east-central Utah, Geophysical Monograph Series. 183, 147–158.
  77. Hiyagon H., Kennedy B.M. (1992) Noble gases in CH4-rich gas fields, Alberta, Canada. Geochim. Cosmochim. Acta. 56(4), 1569–1589.
  78. Holland G., Lollar B.S., Li L., Lacrampe-Couloume G., Slater G.F., Ballentine C.J. (2013) Deep fracture fluids isolated in the crust since the Precambrian era. Nature. 497, 357–360.
  79. Holloway S., Pearce J.M., Ohsumi T., Hards V.L. (2005) A Review of Natural CO2 Occurrences and their Relevance to CO2 Storage, BGS. External Report No CR/05/104, 117 pp.
  80. Jenden P.D., Newell K.D., Kaplan I.R., Watney W.L. (1988) Composition and stable-isotope geochemistry of natural gases from Kansas, Midcontinent, U.S.A. Chem. Geol., 71(1–3), 117–147.
  81. Jenden P.D., Kaplan I.R. (1989) Origin of Natural Gas in Sacramento Basin, California, AAPG Bull. 73(4), 431–453.
  82. Jenden P.D., Drazan D.J., Kaplan I.R. (1993) Mixing of thermogenic natural gases in northern Appalachian Basin. AAPG Bull. 77(6), 980–998.
  83. Karlstrom K., Crossey L.J., Hilton D.R., Barry P.H. (2013) Mantle 3He and CO2 degassing in carbonic and geothermal springs of Colorado and implications for neotectonics of the Rocky Mountains. Geology. 41(4), 495–498.
  84. Kennedy B.M., Hiyagon H., Reynolds J.H. (1990) Crustal neon: a striking uniformity. Earth Planet. Sci. Lett., 98(3–4), 277–286
  85. Kotarba M.J., Nagao K. (2008) Composition and origin of natural gases accumulated in the Polish and Ukrainian parts of the Carpathian region: Gaseous hydrocarbons, noble gases, carbon dioxide and nitrogen. Chem. Geol. 255(3–4), 426–438
  86. Kotarba M.J., Nagao K., Karnkowskic P.H. (2014) Origin of gaseous hydrocarbons, noble gases, carbon dioxide and nitrogen in Carboniferous and Permian strata of the distal part of the Polish Basin: Geological and isotopic approach. Chem. Geol. 383, 164–179.
  87. Kotarba M.J., Nagao K. (2015) Molecular and isotopic compositions and origin of natural gases from Cambrian and Carboniferous-Lower Permian reservoirs of the onshore Polish Baltic region, Int. J. Earth Sci. 104, 241–261.
  88. Li L., Li K., Giunta T., Warr O., Labidi J., Sherwood Lollar B. (2021). N2 in deep subsurface fracture fluids of the Canadian Shield: Source and possible recycling processes. Chem. Geol. 585, p. 120571.
  89. Lippmann-Pipke J., Sherwood Lollar B., Niedermann S., Stroncik N.A., Naumann R., van Heerden E., Onstott T.C. (2011) Neon identifies two billion year old fluid component in Kaapvaal Craton. Chem. Geol. 283(3–4), 287–296.
  90. Littke R., Krooss B.M., Idiz E.F., Frielingsdorf J. (1995) Molecular nitrogen in natural gas accumulations: generation from sedimentary organic matter at high temperatures. AAPG Bull. 79(3), 410–430.
  91. Ma L., Castro M.C., Hall C.M. (2009) Atmospheric noble gas signatures in deep Michigan Basin brines as indicators of a past thermal event. Earth Planet. Sci. Lett. 277(1–2), 137–147.
  92. Merrill M.D., Huntb A.G., Lohra C.D. (2014) Noble gas geochemistry investigation of high CO2 natural gas at the LaBarge Platform, Wyoming, USA. Energy Procedia. 63, 4186–4190.
  93. Merrill M.D., Slucher E.R., Roberts-Ashby T.L., Warwick P.D., Blondes M.S., Freeman P.A., Cahan S.M., DeVera C.A. and Lohr C.D. (2015) Geologic framework for the national assessment of carbon dioxide storage resources: Permian and Palo Duro Basins and Bend Arch-Fort Worth Basin: Chapter K in Geologic framework for the national assessment of carbon dioxide storage resources (No. 2012–1024-K). US Geological Survey.
  94. Mingram B., Bräuer K. (2001) Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variscan Belt. Geochim. Cosmochim. Acta. 65(2), 273–287.
  95. Moor B.J., Sigler S. (1987) Analyses of natural gases, 1917–85. BuMines. Inf. Circ. № 9129, 1206 pp.
  96. Moor M.T., Vinson D.S., Whyte C.J., Eymold W.K., Walsh T.B., Darrah T.H. (2018) Differentiating between biogenic and thermogenic sources of natural gas in coalbed methane reservoirs from the Illinois Basin using noble gas and hydrocarbon geochemistry. Geological Society, London, Special Publications, 468, 151–188.
  97. Olaf T. (2005) Bacterial Methane Formation and Distribution in Marine Environments: Case Studies from Arkona Basin (Western Baltic Sea) and Hotspots in the Central South Pacific. PhD Thesis, Christian-Albrechts-Universität zu Kiel., 146 pp.
  98. Patterson D.B., Honda M., McDougall I. (1994) Deconvolution of multiple components of neon and helium in mantle-derived samples. Noble Gas Geochemistry and Cosmochemistry (ed. J. Matsuda), 179–189.
  99. Phinney D., Tennyson J., Frick U. (1978) Xenon in CO2 well gas revisited, J. Geophys. Res. 83(NB5), 2313–2319.
  100. Pierce A.P., Gott G.B., Mytton J.W. (1964). Uranium and Helium in the Panhandle Gas Field Texas, and Adjacent Areas. US Geol. Survey Prof., paper 454-G, 57 pp.
  101. Pinti D.L., Marty B. (1995) Noble gases in crude oils from Paris Basin, France: implications for the origin of fluids and constraints on oil-water-gas interactions. Geochim. Cosmochim. Acta. 59(16), 3389–3404.
  102. Prinzhofer A. (2013) Noble Gases in Oil and Gas Accumulations. The Noble Gases as Geochemical Tracers. (ed. Pete Burnard). Springer Science & Business Media. 225–247.
  103. Rice D.D., Threlkeld C.N., Vuletich A.K. (1988) Analyses of natural gases from Anadarko Basin, southwestern Kansas, western Oklahoma, and Texas Panhandle, U. S. Geological Survey, Open-File Report 88–391, 6 pp.
  104. Sathaye K.J., Hesse M.A., Cassidy M., Stockli D.F. (2014) Constraints on the magnitude and rate of CO2 dissolution at Bravo Dome natural gas field. PNAS. 111(43), 15332–15337.
  105. Sathaye K.J., Smye A.J., Jordan J.S., Hesse M.A. (2016) Noble gases preserve history of retentive continental crust in the Bravo Dome natural CO2 field, New Mexico. Earth Planet. Sci. Lett., 443, 32–40.
  106. Schoell M. (1988) Multiple origins of methane in the Earth. Chem. Geol. 71(1–3), 1–10.
  107. Schoewe W.H. (1943) Kansas oil field brines and their magnesium content. Kansas Geological Survey Bull. 47(2), 37–76.
  108. Sherwood B., Fritz P., Frape S.K., Macko S.A., Weise S.M., Welhan J.A. (1988) Methane occurrences in the Canadian Shield. Chem. Geol. 71(1–3), 223–236.
  109. Smith M.S., Sharma S., Wyckoff T.B., Frost C.D. (2010) Baseline geochemical characterization of potential receiving reservoirs for carbon dioxide in the Greater Green River Basin, Wyoming. Rocky Mountain Geology. 45(2), 93–111.
  110. Smith S.P., Kennedy B.M. (1983) The solubility of noble gases in water and in NaCl brine. Geochim. Cosmochim. Acta. 47(3), 503–515.
  111. Sorenson R.P. (2005) A dynamic model for the Permian Panhandle and Hugoton fields, western Anadarko basin. AAPG Bull. 89(7), 921–938.
  112. Span R. and Wagner W. (1996) A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data, 25(6), pp.1509–1596.
  113. Staudacher T. (1987) Upper mantle origin for Harding County well gases. Nature. 325, 605–607.
  114. Stolper D.A., Martini A.M., Clog M., Douglas P.M., Shusta S.S., Valentine D.L., Sessions A.L., Eiler J.M. (2015) Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues. Geochim. Cosmochim. Acta. 161, 219–247.
  115. Tikhomirov V.V. (2015) Fluids paragenesis under evaporate in the Volga-Ural Basin. Marine Petrol. Geology. 64, 334–346.
  116. Tikhomirov V.V. (2020) The relationship between He and Cl– as a criterion for the formation of groundwater composition. Chem. Geol. 538, 119496.
  117. Tolstikhin I.N., Ballentine C.J., Polyak B.G., Prasolov E.M., Kikvadze O.E. (2017) The noble gas isotope record of hydrocarbon field formation time scales. Chem. Geol. 471, 141–152.
  118. Torgersen T., Habermehl M.A., Clarke W.B. (1992) Crustal helium fluxes and heat flow in the Great Artesian Basin, Australia. Chem. Geol. 102,139–152.
  119. Torgersen T., Kennedy B.M. (1999) Air-Xe enrichments in Elk Hills oil field gases: role of water in migration and storage, Earth Planet. Sci. Lett. 167(3–4), 239–253
  120. Vinson S., Blair N.E., Martini A.M., Larter S., Orem W.H., McIntosh J.C. (2017) Microbial methane from in situ biodegradation of coal and shale: A review and reevaluation of hydrogen and carbon isotope signatures. Chem. Geol. 453, 128–145.
  121. Warr O., Rochelle C.A., Masters A., Ballentine C.J. (2015) Determining noble gas partitioning within a CO2–H2O system at elevated temperatures and pressures. Geochim. Cosmochim. Acta. 159, 112–125.
  122. Weiss R.F. (1971) Solubility of Helium and Neon in Water and Seawater. J. Chem. Eng. Data, 16(2), 235–241.
  123. Wilkinson M., Gilfillan S.V.M., Haszeldine R.S., Ballentine C.J. (2009) Plumbing the depths: Testing natural tracers of subsurface CO2 origin and migration, Utah. In Carbon dioxide sequestration in geological media (Eds. Grobe M., Pashin J.C., Dodge R.L.) State of the science: AAPG Studies in Geology. 59, 619–634.
  124. Zaikowski A., Kosanke B.J., Hubbard N. (1987) Noble gas composition of deep brines from the Palo Duro Basin, Texas. Geochim. Cosmochim. Acta. 51(1), 73–84.
  125. Zartman R.E., Wasserburg G.J., Reynolds J.H. (1961) Helium, argon, and carbon in some natural gases. J. Geophys. Res. 66(1), 277–306.
  126. Zhou Z., Ballentine C.J., Schoell M., Stevens S.H. (2012) Identifying and quantifying natural CO2 sequestration processes over geological timescales: The Jackson Dome CO2 Deposit, USA. Geochim. Cosmochim. Acta. 86, 257–275.
  127. Zwahlen C., Wogelius R., Hollis C., Holland G. (2019) Reaction path modelling illustrating the fluid history of a natural CO2–H2S reservoir. Appl. Geochem. 109, 104391.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».