DISTRIBUTION OF HYDROCARBON BIOMARKERS WITH DEPTH IN MARINE SEDIMENTS IN THE AREA OF THE LINEAR DEPRESSION OF THE WEST KARA STAGE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Studies of molecular and hydrocarbon composition in marine sediments provide important information on sedimentary organic matter (OM). In this work, the distribution of hydrocarbons and molecular markers along the depth of the sedimentary cover in the region of the linear depression of the West Kara stage was studied. For this, two sediment columns were sampled during the 89th cruise of the R/V “Akademik Mstislav Keldysh”: at station 7444 and at background station 7441. The distribution of n-alkanes was measured by GC-MS analysis and the peculiarities of distribution of the sediment OM in marine sediments of biomarker indices with sediment depth were determined. It was shown that higher terrestrial vegetation was the dominant source to the sediment OM of marine sediments at stations 7444 and 7441. The OM had low maturity as shown by the values of the Ts/(Ts+Tm) ratio. According to the values of H31–S/H31–(S+R) and NAR indices, a small constant inflow of petrogenic hydrocarbons was observed in the study area, while at the background station 7441 the inflow was much less. Based on the distribution of CPI25–33, TAR and NAR indices, the presence of hydrocarbons of anthropogenic origin in the near-surface layers of 0–15 cm sediment at the background station 7441 was assumed.

About the authors

V. S/ Sevastyanov

Vernadsky Institute of Geochemistry and Analytical Chemistry

Email: fedulov.vs@yandex.ru
Russian Federation, Kosygin Str., 19, Moscow, 119991

V. S. Fedulov

Vernadsky Institute of Geochemistry and Analytical Chemistry

Email: fedulov.vs@yandex.ru
Russian Federation, Kosygin Str., 19, Moscow, 119991

V. Yu. Fedulova

Vernadsky Institute of Geochemistry and Analytical Chemistry

Email: fedulov.vs@yandex.ru
Russian Federation, Kosygin Str., 19, Moscow, 119991

R. H. Dzhenloda

Vernadsky Institute of Geochemistry and Analytical Chemistry

Email: fedulov.vs@yandex.ru
Russian Federation, Kosygin Str., 19, Moscow, 119991

N. V. Dushenko

Vernadsky Institute of Geochemistry and Analytical Chemistry

Email: fedulov.vs@yandex.ru
Russian Federation, Kosygin Str., 19, Moscow, 119991

S. A. Voropaev

Vernadsky Institute of Geochemistry and Analytical Chemistry

Author for correspondence.
Email: fedulov.vs@yandex.ru
Russian Federation, Kosygin Str., 19, Moscow, 119991

References

  1. Баранов Б.В., Амбросимов А.К., Мороз Е.А., Мутовкин А.Д., Сухих Е.А., Дозорова К.А. (2023). Позднечетвертичные контуритовые дрифты на шельфе Карского моря. ДАН. Науки о Земле. 511(2), 102–108.
  2. Галимов Э.М., Фрик М.Г. (1985). Изотопный метод диагностики нефтематеринских отложений. Геохимия. (10), 1474–1484.
  3. Галимов Э.М., Кодина Л.А., Степанец О.В., Коробейник Г.С. (2006). Биогеохимия Российской Арктики. Карское море. Результаты исследований по проекту SIRRO 1995–2003 гг. Геохимия. (11), 1139–1191.
  4. Galimov E.M., Kodina L.A., Stepanets O.V., Korobeinik G.S. (2006) Biogeo-chemistry of the Russian Arctic. Kara Sea: Research results under the SIRRO project, 1995–2003. Geochem. Int. 44(11), 1053–1104. https://doi.org/10.1134/S0016702906110012
  5. Гринько А.А., Гончаров И.В., Шахова Н.Е., Густафссон О., Обласов Н.В., Романкевич Е.А., Зарубин А.Г., Кашапов Р.С., Гершелис Е.В., Дударев О.В., Мазуров А.К., Семилетов И.П., Черных Д.В. (2020) Характерные особенности молекулярного состава органического вещества осадков моря Лаптевых в районах аномального выброса метана. Геология и геофизика. 61(4), 560–585.
  6. Петрова В.И., Батова Г.И., Куршева А.В., Литвиненко И.В. (2010) Геохимия органического вещества донных отложений центрально-арктических поднятий Северного Ледовитого океана. Геология и геофизика. 51(1), 113–125.
  7. Семенюк А.И. (2022). Актуальные проблемы добычи углеводородов на арктическом континентальном шельфе. Океанский менеджмент. 2(16), 27–30
  8. Aboul-Kassim T.A.T., Simoneit B.R.T. (1996). Lipid geochemistry of surficial sediments from the coastal environment of Egypt I. Aliphatic hydrocarbons – characterization and sources. Mar. Chem. 54(1–2), 135–158. https://doi.org/10.1016/0304-4203(95)00098-4
  9. Bai Y., Sicre M.-A., Ren J., Klein V., Jin H., Chen J. (2024) Latitudinal distribution of biomarkers across the western Arctic Ocean and the Bering Sea: an approach to assess sympagic and pelagic algal production. Biogeosciences. 21(3), 689–709. https://doi.org/10.5194/bg‑21-689-2024
  10. Blumenberg M., Lutz R., Schlomer S., Krüger M., Scheeder G., Berglar K., Heyde I., Weniger P. (2016) Hydrocarbons from near-surface sediments of the Barents Sea north of Svalbard – Indication of subsurface hydrocarbon generation? Mar. Pet. Geol. 76, 432–443. https://doi.org/10.1016/j.marpetgeo.2016.05.031
  11. Boucsein B., Knies J., Stein R. (2002) Organic matter deposition along the Kara and Laptev Seas continental margin (eastern Arctic Ocean) during last deglaciation and Holocene: evidence from organic-geochemical and petrographical data. Mar. Geol. 183(1–4), 67–87. https://doi.org/10.1016/S0025-3227(01)00249-3
  12. Bourbonniere R.A., Meyers P.A. (1996). Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnol. Oceanogr. 41(2), 352–359 https://doi.org/10.4319/lo.1996.41.2.0352
  13. Brune A., Frenzel P., Cypionka H (2000). Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol. Rev. 24(5), 691–710. https://doi.org/10.1016/s0168-6445(00)00054-1
  14. Dong L., Polyak L., Xiao X., Brachfeld S., Liu Y., Shi X., Fang X., Bai Y., Zhu A., Li C., Zhao S., Wu D., Wang C. (2022). A Eurasian Basin sedimentary record of glacial impact on the central Arctic Ocean during MIS1–4. Global Planet. Change. 219, Art.: 103993. https://doi.org/10.1016/j.gloplacha.2022.103993
  15. Gao Y., Tan J., Xia J., Wang Y.-P., Wang S., Han Y., He J., Song Z. (2021). Characteristics of organic matter and biomarkers in core sediments from the offshore area of Leizhou Peninsula, South China Sea. Front. Earth Sci. 9, Art.: 647062. https://doi.org/10.3389/feart.2021.647062
  16. Gebhardt A.C., Gaye-Haake B., Unger D., Lahajnar N., Ittekkot V. (2004) Recent particulate organic carbon and total suspended matter fluxes from the Ob and Yenisei Rivers into the Kara Sea (Siberia). Mar. Geol. 207(1–4), 225–245. https://doi.org/10.1016/j.margeo.2004.03.010
  17. Glukhovets D.I., Goldin Y.A. (2020). Surface desalinated layer distribution in the Kara Sea determined by shipboard and satellite data. Oceanologia. 62(3), 364–373. https://doi.org/10.1016/j.oceano.2020.04.002
  18. Goñi M.A., Yunker M.B., Macdonald R.W., Eglinton T.I. (2000) Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf. Mar. Chem. 71(1–2), 23–51. https://doi.org/10.1016/S0304-4203(00)00037-2
  19. González-Vila F.J., Polvillo O., Boski T., Moura D., de Andrés, J.R. (2003). Biomarker patterns in a time-resolved holocene/terminal Pleistocene sedimentary sequence from the Guadiana river estuarine area (SW Portugal/ Spain border). Org. Geochem. 34(12), 1601–1613. https://doi.org/10.1016/j.orggeochem.2003.08.006
  20. Hedges J.I., Keil R.G. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49(2–3), 81–115. https://doi.org/10.1016/0304-4203(95)00008-F
  21. Horner T., Stein R., Fahl K., Birgel D. (2016) Post-glacial variability of sea ice cover, river run-off and biological production in the western Laptev Sea (Arctic Ocean) – A high resolution biomarker study. Quat. Sci. Rev. 143, 133–149. https://doi.org/10.1016/j.quascirev.2016.04.011
  22. Jeng W.-L., Lin S., Kao S.-J. (2003) Distribution of terrigenous lipids in marine sediments off northeastern Taiwan. Deep Sea Res., Part II. 50(6–7), 1179–1201. https://doi.org/10.1016/S0967-0645(03)00017-1
  23. Knoll A.H., Summons R.E., Waldbauer J.R., Zumberge J.E. (2007) The geological succession of primary producers in the oceans. In Evolution of Primary Producers in the Sea (Eds. Falkowski P.G., Knoll A.H.). Elsevier, 133–163. https://doi.org/10.1016/B978-012370518-1/50009-6
  24. Kolling H.M., Stein R., Fahl K., Sadatzki H., de Vernal A., Xiao X. (2020). Biomarker distributions in (sub)‐Arctic surface sediments and their potential for sea ice reconstructions. Geochem., Geophys., Geosyst. 21(10), Art.: e2019GC008629. https://doi.org/10.1029/2019GC008629
  25. Krajewska M., Lubecki L., Szymczak-Zyła M. (2023) Sources of sedimentary organic matter in Arctic fjords: Evidence from lipid molecular markers. Cont. Shelf Res. 264, Art.: 105053. https://doi.org/10.1016/j.csr.2023.105053
  26. Li Y., Pang L., Wang Z., Meng Q., Guan P., Xu X., Fang Y., Lu H., Ye J., Xie W. (2022). Geochemical characteristics and significance of organic matter in hydrate-bearing sediments from Shenhu area, South China Sea. Molecules. 27(8), Art.: 2533. https://doi.org/10.3390/molecules27082533
  27. Macías-Zamora J.V. (1996) Distribution of hydrocarbons in recent marine sediments off the coast of Baja California. Environ. Pollut. (Oxford, U.K.). 92(1), 45–53. https://doi.org/10.1016/0269-7491(95)00086-0
  28. Meredith W., Snape C.E., Carr A.D., Nytoft H.P., Love G.D. (2008) The occurrence of unusual hopenes in hydropyrolysates generated from severely biodegraded oil seep asphaltenes. Org. Geochem. 39(8), 1243–1248. https://doi.org/10.1016/j.orggeochem.2008
  29. Meyers P.A. (2003). Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org. Geochem. 34(2), 261–289. https://doi.org/10.1016/s0146-6380(02)00168-7
  30. Meyers P.A., Ishiwatari R. (1993). Lacustrine organic geochemistry – an overview of indicators of organic matter sources and diagenesis in lake sediments. Org. Geochem. 20(7), 867–900. https://doi.org/10.1016/0146-6380(93)90100-P
  31. Mille G., Asia L., Guiliano M., Malleret L., Doumenq P. (2007) Hydrocarbons in coastal sediments from the Mediterranean Sea (Gulf of Fos area, France). Mar. Pollut. Bull. 54(5), 566–575. https://doi.org/10.1016/j.marpolbul.2006.12.009
  32. Moldowan J.M., Sundararaman P., Schoell M. (1986) Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany. Org. Geochem. 10(4–6), 915–926. https://doi.org/10.1016/S0146-6380(86)80029-8
  33. Morgunova I.P., Petrova V.I., Litvinenko I.V., Kursheva A.V., Batova G.., Renaud P.E., Granovitch A.I. (2019). Hydrocarbon molecular markers in the Holocene bottom sediments of the Barents Sea as indicators of natural and anthropogenic impacts. Mar. Pollut. Bull. 149, Art.: 110587. https://doi.org/10.1016/j.marpolbul.2019.110587
  34. Nabbefeld B., Grice K., Schimmelmann A., Summons R.E., Troitzsch U., Twitchett R.J. (2010) A comparison of thermal maturity parameters between freely extracted hydrocarbons (Bitumen I) and a second extract (Bitumen II) from within the kerogen matrix of Permian and Triassic sedimentary rocks. Org. Geochem. 41(2), 78–87. https://doi.org/10.1016/j.orggeochem.2009.08.004
  35. Nemirovskaya I.A., Khramtsova A.V. (2022). Anthropogenic and natural hydrocarbons in water and sediments of the Kara Sea. Mar. Pollut. Bull. 185, Art.: 114229. https://doi.org/10.1016/j.marpolbul.2022.114229
  36. Ogbesejana A.B., Liu B., Gao S., Akinyemi S.A., Bello O.M., Song Y. (2023). Applying biomarkers as paleoenvironmental indicators to reveal the organic matter enrichment of shale during deep energy exploration: a review. RSC Adv. 13(36), 25635–25659. https://doi.org/10.1039/d3ra04435a
  37. Peters K.E., Walters C.C., Moldowan J.M. (2005). The biomarker guide II. Biomarkers and isotopes in petroleum systems and earth history, 2nd ed., Vol 2. Cambridge: Cambridge University Press, 701 p.
  38. Seifert W.K., Moldowan J.M. (1980). The effect of thermal stress on sourcerock quality as measured by hopane stereochemistry. Phys. Chem. Earth. 12, 229–237. https://doi.org/10.1016/0079-1946(79)90107-1
  39. Silliman J.E., Schelske C.L. (2003). Saturated hydrocarbons in the sediments of lake apopka, Florida. Org. Geochem. 34(2), 253–260. https://doi.org/10.1016/s0146-6380(02)00169-9
  40. Tesi T., Miserocchi S., Goñi M.A., Langone L., Boldrin A., Turchetto M. (2007). Organic matter origin and distribution in suspended particulate materials and surficial sediments from the western Adriatic Sea (Italy). Estuarine, Coastal Shelf Sci. 73(3–4), 431–446. https://doi.org/10.1016/j.ecss.2007.02.008
  41. Venkatesan M.I., Kaplan I.R. (1982). Distribution and transport of hydrocarbons in surface sediments of the alaskan outer continental shelf. Geochim. Cosmochim. Acta. 46(11), 2135–2149. https://doi.org/10.1016/0016-7037(82)90190-9
  42. Wenger L.M., Davis C.L., Isaksen G.H. (2002). Multiple controls on petroleum biodegradation and impact on oil quality. SPE Reserv. Eval. Eng. 5(5), 375–383. https://doi.org/10.2118/80168-pa
  43. Xiao X., Fahl K., Stein R. (2013). Biomarker distributions in surface sediments from the Kara and Laptev seas (Arctic Ocean): indicators for organic-carbon sources and sea-ice coverage. Quat. Sci. Rev. 79, 40–52. https://doi.org/10.1016/j.quascirev.2012.11.028
  44. Xu L., Wang J. (2022). Distribution characteristics of long-chain branched alkanes with quaternary carbon atoms in the carboniferous shales of the Wuwei Basin, China. Front. Earth Sci. 9, Art.: 819732. https://doi.org/10.3389/feart.2021.819732
  45. Yunker M.B., Macdonald R.W., Veltkamp D.J., Cretney W.J. (1995) Terrestrial and marine biomarkers in a seasonally ice-covered Arctic estuary – integration of multivariate and biomarker approaches. Mar. Chem. 49(1), 1–50. https://doi.org/10.1016/0304-4203(94)00057-K
  46. Yunker M.B., Macdonald R.W., Snowdon L.R., Fowler B.R. (2011) Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments. Org. Geochem. 42(9), 1109–1146. https://doi.org/10.1016/j.orggeochem.2011.06.007
  47. Zaghden H., Tedetti M., Sayadi S., Serbaji M.M., Elleuch B., Saliot A. (2017). Origin and distribution of hydrocarbons and organic matter in the surficial sediments of the Sfax-Kerkennah channel (Tunisia, Southern Mediterranean Sea). Mar. Pollut. Bull. 117(1–2), 414–428. https://doi.org/10.1016/j.marpolbul.2017.02.007
  48. Zegouagh Y., Derenne S., Largeau C., Saliot A. (1996) Organic matter sources and early diagenetic alterations in Arctic surface sediments (Lena River delta and Laptev Sea, Eastern Siberia)-I. Analysis of the carboxylic acids released via sequential treatments. Org. Geochem. 24(8–9), 841–857. https://doi.org/10.1016/S0146-6380(96)00075-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».