Экспериментальные данные по образованию нанофазного железа в лунном грунте
- Авторы: Сорокин Е.М.1, Герасимов М.В.2, Зайцев М.А.2, Щербаков В.Д.3, Рязанцев К.М.1, Крашенинников С.П.1, Яковлев О.И.1, Слюта Е.Н.1
-
Учреждения:
- Институт геохимии и аналитической химии им. В.И. Вернадского РАН
- Институт космических исследований РАН
- Московский государственный университет имени М.В. Ломоносова
- Выпуск: Том 70, № 2 (2025)
- Страницы: 107-125
- Раздел: Статьи
- URL: https://journals.rcsi.science/0016-7525/article/view/294761
- DOI: https://doi.org/10.31857/S0016752525020013
- EDN: https://elibrary.ru/GPXKGA
- ID: 294761
Цитировать
Аннотация
Образование нанофазного металлического железа (npFe0) в лунном реголите, которое наблюдается в конденсатных пленках на поверхности минеральных зерен и в агглютинатных стеклах, является одним из признаков «космического выветривания» на Луне, вызванного солнечным ветром и микрометеоритной бомбардировкой. В статье приводятся результаты лазерных экспериментов, имитирующих «удар» микрометеорита по базальтовым, оливиновым, пироксеновым и некоторым другим типам мишеней. В расплавленных продуктах «удара» были обнаружены многочисленные железные наносферулы, часто структурированные в цепочки и россыпи. Эксперименты показали, что npFe0 может формироваться без участия в качестве восстановителя имплантированных ионов солнечного ветра (ионов водорода), а также без процесса конденсации железа из ударно-образованного пара. Подобные россыпи нанофазового металлического железа и цепочечные структуры наблюдаются в ударных стеклах реголита Луны и частицах астероидов.
Полный текст

Об авторах
Е. М. Сорокин
Институт геохимии и аналитической химии им. В.И. Вернадского РАН
Автор, ответственный за переписку.
Email: egorgeohim@ya.ru
Россия, 119991, Москва, ул. Косыгина, 19
М. В. Герасимов
Институт космических исследований РАН
Email: egorgeohim@ya.ru
Россия, 117485, Москва, ул. Профсоюзная, 84/32
М. А. Зайцев
Институт космических исследований РАН
Email: egorgeohim@ya.ru
Россия, 117485, Москва, ул. Профсоюзная, 84/32
В. Д. Щербаков
Московский государственный университет имени М.В. Ломоносова
Email: egorgeohim@ya.ru
Геологический факультет
Россия, 119991, Москва, Ленинские горы, 1К. М. Рязанцев
Институт геохимии и аналитической химии им. В.И. Вернадского РАН
Email: egorgeohim@ya.ru
Россия, 119991, Москва, ул. Косыгина, 19
С. П. Крашенинников
Институт геохимии и аналитической химии им. В.И. Вернадского РАН
Email: egorgeohim@ya.ru
Россия, 119991, Москва, ул. Косыгина, 19
О. И. Яковлев
Институт геохимии и аналитической химии им. В.И. Вернадского РАН
Email: egorgeohim@ya.ru
Россия, 119991, Москва, ул. Косыгина, 19
Е. Н. Слюта
Институт геохимии и аналитической химии им. В.И. Вернадского РАН
Email: egorgeohim@ya.ru
Россия, 119991, Москва, ул. Косыгина, 19
Список литературы
- Анисимов С.И., Имас Я.А., Романов Г.С., Ходыко Ю.В. (1970). Действие излучения большой мощности на металлы. М.: Наука, 272 с.
- Арискин А.А., Яковлев О.И., Бычков К.А. (2008) Импульсный нагрев конденсатов газово-пылевой небулы как механизм сопряженного образования силикатных хондр и металла. Проблемы зарождения и эволюции биосферы (под ред. Э.М. Галимова). — М.: Книжный дом «ЛИБРОКОМ», 345–364.
- Виноградов А.П., Нефедов В.И., Урусов В.С., Жаворонков Н.М. (1972) Рентгеноэлектронное исследование лунного реголита из морей Изобилия и Спокойствия. ДАН СССР. 2, 207.
- Маркова О.М., Яковлев О.И., Семенов Г.А., Белов А.Н. (1986). Некоторые общие результаты экспериментов по испарению природных расплавов в камере Кнудсена, Геохимия. (11), 1559–1569.
- Рощин В.Е., Рощин А.В. (2020) Общая электронная теориявосстановления (окисления) металлов. Известия высших учебных заведений. Черная металлургия. 63(3–4), 271–285.
- Рэди Дж. (1974) Действие мощного лазерного излучения. М.: Мир, 468 с.
- Слюта Е.Н., Воропаев С.А. (1992) Малые и планетные тела Солнечной системы. Критическая масса ледяных тел. ДАН. 325(4), 692–696.
- Яковлев О.И., Диков Ю.П., Герасимов М.В., Влотска Ф., Хут Й. (2003) Экспериментальное изучение факторов, определяющих состав стекол лунного реголита. Геохимия. 5, 467–481.
- Яковлев О.И., Косолапов А.И., Кузнецов А.И., Нусинов М.Д. (1972) Результаты исследования фракционного испарения базальтового расплава в вакууме. ДАН СССР. 206, 4, 970–973.
- Яковлев О.И., Маркова О.М., Семенов Г.А., Белов А.Н. (1987) Об образовании металлической формы железа при нагревании хондритов. Метеоритика. 46, 104–118.
- Adams J.B., McCord T.B. (1971) Alteration of lunar optical properties: age and composition effects. Science. 171(3971), 567–71.
- Allen С.C., Morris R.V., Lauer H.V., Jr. McKay D.S. (1993) Microscopic Iron Metal on Glass and Minerals— A Tool for Studying Regolith Maturity. Icarus. 104, 291–300.
- Allen C.C., Morris R.V., McKay D.S. (1995) Experimental space weathering of lunar soils. Meteoritics. 30, 479–607.
- Basu A. (2005) Nanophase Fe0 in lunar soils. J. Earth Syst. Sci. 114(3), 375–380.
- Brunetto R., Romano F., Blanco A., Fonti S., Martino M., Orofino V., Verrienti C. (2006) Space weathering of silicates simulated by nanosecond pulse UV excimer laser. Icarus. 180, 546–554.
- Christoffersen R., Rahman Z., Keller L.P. (2012) Solar ion sputter deposition in the lunar regolith: experimental simulation using focused-ion beam techniques. In: Proceedings of the 43rd Lunar and Planetary Science Conference, 2614.
- Cisowski C.S., Dunn J.R., Fuller M., Rose M.F., Wasilewski P.J. (1974) Impact processes and lunar magnetism. In: Proceedings of the Fifth Lunar Conference Suppl. 5, Geochim. Cosmochim. Acta. 3, 2841–2858.
- Davoisne C., Leroux H., Frère M., Gimblot J., Gengembre L., Djouadi Z., Ferreiro V., d’Hendecourt L., Jones A. (2008) Chemical and morphological evolution of a silicate surface under low-energy ion irradiation. A&A. 482(2), 541–548.
- Dukes C.A, Baragiola R.A. (1999) Surface modification of olivine by H+ and He+ bombardment. J. Geophys. Res. 104, 1865–1872.
- Gerasimov M.V, Ivanov B.A., Yakovlev O.I., Dikov Yu.P. (1999) Physics and Chemistry of Impacts. In: Ehrenfreund, K. Krafft, H. Kochan, V. Pirronello (eds.), Laboratory Astrophysics and Space Research. Astrophys. Space Sci. 236, 279–330
- Gerasimov M.V., Dikov Yu.P., Yakovlev O.I. (2004) Reduction of W, Mn, and Fe, during high-temperature vaporization. In: Proceedings of the 35th Lunar Planetary Sci. Conf., 1491.
- Hapke B. (1973) Darkening of silicate rock powders by solar wind sputtering. Moon, 7, 342.
- Hapke B. (2001) Space weathering from Mercury to the asteroid belt. J. Geophys. Res. 106, 10039–10073.
- Hapke B., Cassidy W., Wells E. (1975) Effects of vapor-phase deposition processes on the optical, chemical and magnetic properties of the lunar regolith. Earth, Moon, Planets, 13, 339–354.
- Hartung J.B., Horz F., Gault D.E. (1972) Lunar microcraters and interplanetary dust. In: Proc. of the 3rd Lunar Science Conf. Suppl. 3, Geochim. Cosmochim. Acta. 3, 2733–2753.
- Housley R.M., Grant R.W., Abdel-Gawad M. (1972) Study of excess Fe metal in the lunar fines by magnetic separation, Mossbauer spectroscopy, and microscopic examination. In: Proc. Third Lunar Sci. Conf, Geochim. Cosmochim. Acta, Suppl. 3, 1, 1065–1076.
- Housley R.M., Blander M., Abdel-Gawad M., Grant R.W., Muir A.H. Jr. (1970) Mossbauer spectroscopy of Apollo 11 samples. In: Proc. Apollo 11 Set Conf, Geochim. Cosmochim. Acta, Suppl. 1, 3, 2251–2268.
- Housley R.M., Cirlin E.H., Goldberg I.B., Crowe, H. (1975) Ferromagnetic resonance as a method of studying the micrometeorite bombardment history of the lunar surface. In: Proc. 6th Lunar Sci. Conf. 3173–3186.
- Housley R.M., Grant R.W., Muir A.H. Jr. Blander M., and Abdel-Gawad, M. (1971) Mossbauer studies of Apollo 12 Samples. In: Proc. Apollo 11 Lunar Set Conf, Geochim. Cosmochim Acta, Suppl. 1, 3, 2125–2136
- Housley R., Grant R., Paton N. (1973) Origin and characteristics of excess Fe metal in lunar glass welded aggregates. Geochim.Cosmochim. Acta. Suppl. 4, 2737–2749
- Jopek T.J., Kaňuchová Z. (2017) IAU Meteor Data Center—the shower database: A status report. Planetary and Space Science. 143, 3–6.
- Keller L.P., McKay D.S. (1995) The Origin of Amorphous Rims on Lunar Soil Grains – Revisited. Meteoritics. 30(5), 526.
- Keller L.P., McKay D.S. (1993) Discovery of vapor deposits in the lunar regolith. Science, 261, 1305–1307.
- Keller L.P., Clemett S.J. (2001) Formation of nanophase iron in the lunar regolith. In: Poc. 32nd Lunar and Planetary Science Conference. 2097.
- Keller L.P., McKay D.S. (1997) The nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Acta. 61(11), 2331–2341.
- Kissel J., Kruger F.R. (1987). Ion Formation by Impact of Fast Dust Particles and Comparison with Related Techniques. Appl. Phys. A 42, 69–85.
- Kuhlman K.R., Sridharan K, Kvit A. (2015) Simulation of solar wind space weathering in orthopyroxene. Planet. Space Science. 115, 110–114.
- Kurahashi E., Yamanaka C., Nakamura K., Sasaki S. (2002) Laboratory simulation of space weathering: ESR measurements of nanophase metallic iron in laser-irradiated materials. Earth Planets Space. 54, e5–e7.
- Lantz C., Brunetto R., Barucci M., Fornasier S., Baklouti D., Bourcüois J., Godard M. (2017) Ion irradiation of carbonaceous chondrites: A new view of space weathering on primitive asteroids. Icarus. 285, 43–57.
- Li Y., Li S.J., Xie Z.D., Li X.Y. (2016) Laser irradiated impact experiments show that nanophase iron particles formed by shock-induced melting rather than vapor deposition. 79th Annual Meeting of the Meteoritical Society, 6338.
- Loeffler M.J., Dukes C.A., Christoffersen R., and Baragiola R.A. (2016). Space weathering of silicates simulated by successive laser irradiation: In situ reflectance measurements of Fo90, Fo99+, and SiO2. Meteorit. Planet. Science. 51, 2, 261–275 (2016)
- Loeffler M.J., Baragiola A., Murayama M. (2008a) Laboratory simulations of redeposition of impact ejecta on mineral surfaces. Icarus. 196, 285–292.
- Loeffler M.J., Dukes C.A., Baragiola R.A. (2009) Irradiation of olivine by 4 keV He+: Simulation of space weathering by the solar wind. J. Geophys. Res. 114, E03003.
- Loeffler M.J., Dukes C.A., Chang W.Y., McFadden L.A., Baragiola R.A. (2008b) Laboratory simulations of sulfur depletion at Eros. Icarus. 195, 622–629.
- McKay D.S., Fruland R.M., Heiken G.H. (1974) Grain size and the evolution of lunar soils. In: Proceedings of the Fifth Lunar Conference, Supplement 5, Geochim. Cosmochim. Acta. 1, 887–906.
- McKay D.S., Heiken G.H., Basu A., Blanford G., Simon S., Reedy R., French B. M., and Papike J. (1991) The lunar regolith. In: Heiken G. H., Vaniman D. T., French B. M. (eds), The lunar sourcebook. Cambridge University Press, New York, 284–356.
- Moroz L.V., Fisenko A.V., Semjonova L.F., Pieters C.M., Korotaeva N.N. (1996) Optical effects of regolith processes on S-asteroids as simulated by laser shots on ordinary chondrite and other mafic materials. Icarus. 122, 366–382.
- Morris R.V. (1976) Surface exposure indices of lunar soils: A comparative FMR study. In: Proc. 7th Lunar Planetary Sci. Conf. Pergamon, New York, 315–335.
- Morris R.V. (1978) The surface exposure (maturity) of lunar soils: Some concepts and Is/FeO compilation. In: Proc. 9th Lunar Planetary Sci. Conf. Pergamon, New York, 2287–2297.
- Morris R.V. (1980), Origins and size distribution of metallic iron particles in the lunar regolith. In: Proc. 11th Lunar Planet. Sci. Conf. 1697–1712.
- Nagata T., Ishikawa Y., Kinoshita H., Kono M., Syono Y., Fisher R.M. (1970) Magnetic properties and natural remanent magnetization of lunar materials. In: Proc. Apollo 11 Lunar Sci. Conf, Geochim. Cosmochim. Acta, Suppl. 1, 3, 2325–2340.
- Noble S.K., Pieters C.M., Keller L.P. (2005) Evidence of space weathering in regolith breccias I: Lunar regolith breccias. Meteoritics & Planetary Science. 40, 397–408.
- Noble S.K., Pieters C.M., Keller L.P. (2007) An experimental approach to understanding the optical effects of space weathering. Icarus. 192(2), 629–642.
- Noguchi T., Kimura M., Hashimoto T., Konno M., Nakamura T., Zolensky M.E., Okazaki R., Tanaka M., Tsuchiyama A., Nakato A., Ogami T., Ishida H., Sagae R., Tsujimoto S., Matsumoto T., Matsuno J., Fujimura A., Abe M., Yada T., Mukai T., Ueno M., Okada T., Shirai K., Ishibashi Y. (2014) Space weathered rims found on the surfaces of the Itokawa dust particles. Meteoritics & Planetary Science. 49(2), 188–214.
- Pieters C.M., Noble S.K. (2016) Space weathering on airless bodies. J. Geophys. Res. Planets. 121, 1865–1884.
- Pieters C.M., Taylor L.A., Noble S.K., Keller L.P., Hapke B., Morris R.V., Allen C.C., McKay D.S., Wentworth S. (2000) Space weathering on airless bodies: Resolving a mystery with lunar samples. Meteorit. Planet. Sci. 35(5), 1101–1107.
- Runcorn S.K., Collinson D.W., O’Reilly W., Battey M.H., Stephenson A., Jones J.M., Manson A.J., Readman P.W. (1970) Magnetic properties of Apollo 11 lunar samples. In: Proc. Apollo 11 Lunar Sci. Conf., Geochim. Cosmochim. Acta. Suppl. 1, 3, 2369–2387.
- Sasaki S., Nakamura K., Hamabe Y., Kurahashi E., Hiroi T. (2001) Production of iron nanoparticles by laser irradiation in a simulation of lunar-like space weathering. Nature. 410, 555–557.
- Slyuta E.N., Physical and mechanical properties of the lunar soil (a review), Sol. Syst. Res. 2014, 48(5), 330– 353.
- Sorokin E.M., Yakovlev O.I., Slyuta E.N., Gerasimov M.V., Zaitsev M.A., Shcherbakov V.D., Ryazantsev K.M., Krasheninnikov S.P. (2020) Experimental Modeling of a Micrometeorite Impact on the Moon. Geochem. Int. 58(2), 113–127.
- Thompson M.S., Zega T.J., Howe J.Y. (2017) In situ experimental formation and growth of Fe nanoparticles and vesicles in lunar soil. Meteoritics & Planetary Science. 52(3), 413–427.
- Tsay F.D., Chan S.I., Manatt S.L. (1971) Ferromagnetic resonance of lunar samples. Geochim. Cosmochim. Acta. 35, 865–875.
- Yakovlev O.I., Dikov Yu.P., Gerasimov M.V. (2006) Experimental data on the thermal reduction of phosphorus and iron and their significance for the interpretation of the impact change of matter on the Moon. Geochem. Int. 9, 915–923.
- Yakovlev O.I., Dikov Yu.P., Gerasimov M.V. (2009) Effect of the disproportionation reaction of ferrous iron in impact-evaporation processes. Geochem. Int. 47(2), 134–142.
- Zaitsev M.A., Gerasimov M.V., Safonova E.N., Vasiljeva A.S. (2016) Peculiarities in the formation of complex organic compounds in a nitrogen-methane atmosphere during hypervelocity impacts. Solar System Research. 50(2), 113–129.
Дополнительные файлы
