Geochemical signature of basalts of the MAR Rift Valley at 20°31′ n: origin conditions of the anomalous volcanic center of Puy des Folles in the axial zone of the Mid-Atlantic Ridge

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of study of chilled glasses sampled during 45-th cruise of R/V “Professor Logachev” at the top of the submarine volcano Puy-des-Folles are presented. Puy-des-Folles Volcano is located in the axial part of Rift Valley of the Mid-Atlantic Ridge (MAR) at 20°31′N.Unlike typical volcanic axial highs which usually does n ot exceed several hundred meters the summit of the Puy-des-Folles volcano is located a depth of 1950 m and rises 1800 meters above the bottom of the Rift Valley. The data on geochemistry and isotope composition of chilled glasses examined allow to come to a number of conclusions that expanded existing ideas about magmatic and rectjnic processes conducted in the Rift Valley of the Slow Spreading Ridges. Chilled glasses sampled at the top of the Puy-des-Folles volcano are originated from a very depleted melt formed by partial melting of the DM reservoir. Puy-des-Folles volcano was formed as result of trhe activity of a long-lived magma chamber located below the Rift Valley axis. It is possible that in addition to the DM reservoir mantle source enriched in incompatible elements may have participated in the formation of the parenatl melts for studied chilled glasses.Weak geoichemical signal of contamination of perental melt with a hydrothermal component in chilled glasses was established. Signs of staganation in the spreading of the oceanic crust in the Rift Valley segment studied in thic work have been established.

Full Text

Restricted Access

About the authors

S. A. Silantyev

Vernadsky Institute of RAS

Author for correspondence.
Email: silantyev@geokhi.ru
Russian Federation, Kosygin st., 19, Moscow, 119991

A. I. Buikin

Vernadsky Institute of RAS

Email: silantyev@geokhi.ru
Russian Federation, Kosygin st., 19, Moscow, 119991

A. A. Gurenko

Université de Lorraine

Email: silantyev@geokhi.ru

Centre de Recherches Petrographiques et Geochimiques, UMR 7358

France, 54501 Vandoeuvre-les-Nancy

A. V. Chugaev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of RAS

Email: silantyev@geokhi.ru
Russian Federation, Staromonetny per., 35, Moscow, 119017

V. V. Shabykova

Vernadsky Institute of RAS

Email: silantyev@geokhi.ru
Russian Federation, Kosygin st., 19, Moscow, 119991

A. R. Tshovrebova

Vernadsky Institute of RAS

Email: silantyev@geokhi.ru
Russian Federation, Kosygin st., 19, Moscow, 119991

V. E. Beltenev

VNIIOkeangeologia

Email: silantyev@geokhi.ru
Russian Federation, Angliiskii pt., 1, Saint Petersburg, 190121

A. S. Bich

VNIIOkeangeologia

Email: silantyev@geokhi.ru
Russian Federation, Angliiskii pt., 1, Saint Petersburg, 190121

References

  1. Андреев С. И., Бабаева С. Ф., Казакова В. Е., Колчина Н.Л., Суханова А.А., Фирстова А.В., Ануфри- ева С.И., Луговская И.Г. (2017) Комплексы редкометалльных элементов в составе гидротермальных сульфидных руд Мирового океана. Руды и металлы. 4, 102–111.
  2. Дмитриев Л. В., Соколов С. Ю., Плечова А. А. (2006) Статистическая оценка вариаций состава и P-T условий эволюции базальтов срединно-океанических хребтов и их региональное распределение. Петрология. 14(2), 1–22.
  3. Костицын Ю. А. (2004) Sm-Nd и Lu-Hf изотопные системы Земли: отвечают ли они хондритам? Петрология.12(5), 451–466.
  4. Насонов Д. А. и др. (2023) Отчет по объекту «Оценочные работы на рудных полях северной части Российского разведочного района глубоководных полиметаллических сульфидов (РРР-ГПС) в Атлантическом океане» по Государственному контракту от 31.08.2021; № К.2021.005 в 6 книгах, фонды АО «ПМГРЭ», г. Ломоносов
  5. Силантьев С. А., Бортников Н. С., Шатагин К. Н., Бычкова Я. В., Краснова Е. А., Бельтенев В. Е. (2015.) Перидотит-базальтовая ассоциация САХ на 19°42′ – 19°59′ с. ш.: оценка условий петрогенезиса и баланса вещества при гидротермальном преобразовании океанической коры. Петрология. 23(1), 1–23.
  6. Силантьев С. А., Данюшевский Л. В., Плечова А. А., Доссо Л., Базылев Б. А., Бельтенев В. Е. (2008) Геохимические и изотопные черты продуктов магматизма рифтовой долины САХ в районах 12°49′–17°23′с.ш. и 29°59′–33°41′с.ш.: свидетельство двух контрастных источников родительских расплавов. Петрология. 16(1), 38–65.
  7. Силантьев С. А., Буйкин А. И., Цховребова А. Р., Шабыкова В. В., Бельтенев В. Е. (2023) Вариации состава закалочных стекол MORB Срединно-Атлантического хребта, 12°–31°с.ш.: Отражение эволюции состава родительских расплавов и влияния гидротермального компонента. Петрология. 31(5), 1–19.
  8. Цховребова А. Р., Шабыкова В. В., Силантьев С. А., Буйкин А. И. (2023) Особенности изотопного состава стронция и неодима в закалочных стеклах базальтов Срединно-Атлантического хребта, 12°–31°с. ш. Геохимия. 68(12), 1241–1252.
  9. R. Tskhovrebova, V. V. Shabykova, S. A. Silantyev, A. I. Buikin (2023) Strontium and Neodymium Isotopic Signatures in Basalt Glasses of the Mid-Atlantic Ridge, 12°–31° N. Geochem Int. 61(12), 1241–1252.
  10. Черкашев Г. А., Степанова Т. В., Андреев С. И. и др. (2018) Рудные объекты в пределах Российского Разведочного Района в северной приэкваториальной части Срединно-Атлантического хребта. В: Мировой океан. Том III. Твердые полезные ископаемые и газовые гидраты в океане. (Под ред. Лобковского Л. И., Черкашева Г. А.) М.: Научный мир, 90–122.
  11. Чернышев И. В., Чугаев А. В., Шатагин К. Н. (2007) Высокоточный изотопный анализ Pb методом многоколлекторной ICP-масс-спектрометрии с нормированием по205Tl/203Tl: оптимизация и калибровка метода для изучения вариаций изотопного состава Pb. Геохимия. 11, 1155–1168.
  12. V. Chernyshev, A. V. Chugaev, K. N. Shatagin (2007) High-Precision Pb Isotope Analysis by Multicollector-ICP-Mass-Spectrometry Using T 205 l/ T 203 l Normalization: Optimization and Calibration of the Method for the Studies of Pb Isotope Variations. Geochem Int. 45(11), 1065–1076.
  13. Чугаев А. В., Чернышев И. В., Лебедев В. А., Еремина А. В. (2013) Изотопный состав свинца и происхождение четвертичных лав вулкана Эльбрус (Большой Кавказ, Россия): данные высокоточного метода MC–ICP-MS. Петрология. 21(1), 20–33.
  14. Bindeman I. (2008) Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Rev. Mineral. Geochem. 69, 445–478.
  15. Boschi L., Dziewonski A. M. (2000) Whole Earth tomography from delay times of P, PcP, PKP phases: lateral heterogeneities in the outer core, or radial anisotropy in the mantle? J. Geophys. Res. 105(B6), 13675–13696
  16. Buchl A., Munker C., Mezger K., Hofmann A. W. (2002) High-precision Nb/Ta and Zr/Hf ratios in global MORB. Goldschmidt Conference Abstracts. A108.
  17. Buikin A. I., Silantyev S. A., Verchovsky A. B. (2022) N-Ar-He-CO 2 systematics combined with H 2 O, Cl, K abundances in MORB glasses demonstrate interaction of magmatic and hydrothermal systems: a case for MAR at 16°07′–17°11′ N. Geochem. Int. 60(11), 1068–1086.
  18. Cadoux A., Iacono-Marziano G., et al. (2017). A new set of standards for in–situ measurement of bromine abundances in natural silicate glasses: Application to SR-XRF, LA-ICP-MS and SIMS techniques. Chem. Geol. 452, 60–70.
  19. Cavosie A. J., Kita N. T., Valley J. W. (2009) Primitive oxygen-isotope ratio recorded in magmatic zircon from the Mid-Atlantic Ridge. Am. Mineralog. 94, 926–934.
  20. Chaussidon M., Jambon A. (1994) Boron content and isotopic composition of oceanic basalts: Geochemical and cosmochemical implications. Earth Planet. Sci. Lett. 121, 277–291.
  21. Cherkashov G., Kuznetsov V., Kuksa K., Tabuns E., Maksimov F., Beltenev V. (2017) Sulfide geochronology along the Northern Equatorial Mid-Atlantic Ridge. Ore Geol. Rev. 87, 147–154.
  22. David K., Schiano P., Allègre C. J. (2000) Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes. Earth Planet. Sci. Lett. 178(3–4), 285–301.
  23. Dosso L., Hanan B. B., Bougault H., Schilling J.-G., Joron J.-L. (1991) Sr-Nd-Pb geochemical morphology between 10° and 17° N on the Mid-Atlantic Ridge: a new MORB isotope signature. Earth Planet. Sci. Lett. 106, 29–43.
  24. Grand S. P., van der Hilst R. D., Widiyantoro S. (1997) Global seismic Tomography: A snapshot of convection in the Earth. GSA Today. 7(4), 1–7.
  25. Gurenko A., Chaussidon M. (1997) Boron concentrations and isotopic composition of the Icelandic mantle: evidence from glass inclusions in olivine. Chem. Geol. 135, 21–34.
  26. Gurenko A. A., Bindeman I. N., Sigurdson I. A. (2015) To the origin of Icelandic rhyolites: insights from partially melted leucocratic xenoliths. Contrib. Mineral. Petrol. 169(5), 1–21.
  27. Gurenko A. A., Kamenetsky V. S., Kerr A. C. (2016) Oxygen isotopes and volatile contents of the Gorgona komatiites, Colombia: A confirmation of the deep mantle origin of H 2 O. Earth Planet. Sci. Lett. 454, 154–165.
  28. Ishikawa T., Nakamura E. (1992) Boron isotope geochemistry of the oceanic crust from DSDP/ODP Hole 504B. Geochim Cosmochim Acta. 56, 1633–1639.
  29. Jackson M.G., Dasgupta R. (2008) Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet. Sci. Lett. 276, 175–186.
  30. Jochum K. P., Stoll B., Herwig K., Woodhead J.et al. (2006) MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochem. Geophys. Geosyst. 7(2), Q02008.
  31. Jochum KP, Weis U., Stoll B., Kuzmin D., Yang Q., Raczek I., Jacob D. E., Stracke A., Birbaum K., Frick D. A., Gunther D., Enzweiler J. (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand. Geoanalyt. Res. 35, 397–429
  32. Kendrick, M. A., C. Hemond, et al. (2017). Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere. Nature Geosci. 10(3), 222–228.
  33. Kendrick M. A. (2018) Halogens in Seawater, Marine Sediments and the Altered Oceanic Lithosphere. In: The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle. Eds. D. E. Harlov and L. Aranovich. Springer Geochemistry. Pp. 591–648. https://link.springer.com/chapter/10.1007/978-3-319-61667-4_9.
  34. Le Douaran S. E., Francheteau J. (1981) Axial depth anomalies from 10 to 50o north along the Mid-Atlantic Ridge: correlation with other mantle properties. Earth Planet. Sci. Lett. 54, 29–47.
  35. Le Roux P.J., Shirey S.B., Hauri E.H., Perfit M.D., Ben-der J.F. The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): Evidence from volatiles ( H 2 O, CO 2 , S) and halogens (F, Cl) // Earth and Planet Sci. Lett. 2006. V. 251 (3–4). PP. 209–231.
  36. Ma B., Liu P.-P., Dick H. J.B., Zhou M.-F., Chen Q., Liu C.-Z. (2024) Trans-Lithospheric Ascent Processes of the Deep-Rooted Magma Plumbing System Underneath the Ultraslow Spreading SW Indian Ridge. J. Geophys. Res. Solid Earth. 129. e2023JB027224. https://doi.org/10.1029/2023JB027224
  37. Marks, M.A.W., Kendrick M., Eby N., Zack T., Wenzel T. (2017). The F, Cl, Br and I Contents of Reference Glasses BHVO-2G, BIR-1G, BCR-2G, GSD-1G, GSE-1G, NIST SRM 610 and NIST SRM 612. Geostand. Geoanalyt. Res. 41(1), 107–122.
  38. Marschall H. R., Wanless V. D., Shimizu N., Pogge von Strandmann P. A.E., Elliott T., Monteleone B. D. (2017) The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle. Geochim. Cosmochim. Acta. 207, 102–138.
  39. Salters V. J.M., Stracke A. (2004) Composition of the depleted mantle Geochem. Geophys. Geosyst. 5(5), doi. 01.1029/2003GC000597.
  40. Saccani E. A. (2015) A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematic. Geoscience Frontiers. 6, 481–501.
  41. Shah A. K., Sempere J.-C. (1998) Morphology of the transition from an axial high to a rift valley at the Southeast Indian Ridge and the relation to variations in mantle temperature. J. Geophys. Res. 103(B3), 5203–5223.
  42. Shirey S. B., Bender J. F., Langmuir C. H. (1987) Three-component isotope heterogeneity near the Oceanographer transform, Mid-Atlantic Ridge. Nature. 325(6101), 217–223.
  43. Skolotnev S. G. (2014) New Isotopic Data for Mid-Atlantic Ridge Basalts from the Arkhangelsk–Sierra Leone Fracture Zone (Central Atlantic). Dokl. Earth Sci. 459(1), 1429–1435.
  44. Smith D. K., Joe R. Cann J. R., Dougherty M. E., Lin J., Spencer S., MacLeod C., Keeton J., McAllister E., Brooks B., Pascoe R., Robertson W. (1995) Mid-Atlantic Ridge volcanism from deep-towed side-scan sonar images, 25o–29o N. J. Volcanol. Geotherm. Res. 67, 233–262.
  45. Sokolov S. Y., Chamov N. P., Khutorskoy M. D., Silantyev S. A. (2020) Intensity indicators of geodynamic processes along the Atlantic-Arctic Rift System. Geodynamics & Tectonophysics. 11(2), 302–319.
  46. Sun S.-S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in Ocean Basins, Saunders, A.D. and Norry, M.J., Eds., Geol. Soc. Spec. Publ. London. 42, 313–345.
  47. Urann B.M., Le Roux V., Hammond K. et al. Fluorine and chlorine in mantle minerals and the halogen budget of the Earth’s mantle // Contrib. Mineral. Petrol. 2017. https://doi.org/10.1007/s00410-017-1368-7
  48. Van Achterbergh E., Ryanm C. G., Griffin W. L. (1999) GLITTER: On-line interactive data reduction for the laser ablation ICP-MS microprobe. Proceedings of the 9th V. M. Goldschmidt Conference. Cambridge, Massachusetts. 305.
  49. Wetzel, D. T., Hauri E. H., Saal A. E., Rutherford M. J. (2015) Carbon content and degassing history of the lunar volcanic glasses. Nature Geosci. 8 (10), 755–758.
  50. Wilson M. (1989) Igneous Petrogenesis. London: Unwin Hyman, Boston-Sidney-Wellington, 466 p.
  51. Workman R. K., Hart S. R. (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231(1–2), 53–72.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Bathymetric map of the area (Nasonov et al., 2023) of the Puy de Fol submarine volcano and the location of the sampling sites for tempered glasses. The shading shows the section of the volcano summit within which signs of active hydrothermal activity have been established.

Download (606KB)
3. Fig. 2. Comparison of the composition of quenched glasses of the Puy de Fol volcano with the compositions of MORB (Kostitsyn, 2004) – blue crosses, including the composition of the products of volcanism of the MAR rift valley at 20°–21°N – red stars (Silantyev et al., 2023). The boundary between E-MORB and N-MORB (blue open stars) is shown according to (Wilson, 1989; Dmitriev et al., 2006).

Download (141KB)
4. Fig. 3. The distribution pattern of chondrite (a) and N-MORB (b) normalized REE contents in the studied quenched glasses. The chondrite and N-MORB compositions are taken from (Sun, McDonough, 1989).

Download (164KB)
5. Fig. 4. Variations in the Nb/Zr (a), (La/Sm)cn (b), and Ba/Sm ratios in quench glasses of the Puy de Fol volcano. For comparison, the data points of the quench glasses of basalts from the MAR rift valley segments (20°–21°N) surrounding the Puy de Fol volcano are shown, as well as from the MAR region between 16° and 17°N, where the effect of highly saline hydrothermal fluid on the quench glass composition was revealed (Buikin et al., 2022). As can be seen, the data points of the samples studied in this work are located on a general trend between strongly depleted and enriched compositions.

Download (124KB)
6. Fig. 5. Covariations of the Zr/Hf ratio with (La/Sm)cn (a), K2O/TiO2 (b), and the contents of MgO (c) and Cl (d) in quenched glasses of the Puy de Fol volcano. The compositions of quenched glasses from the MAR segments at 20°–21° and 16°–17° N are borrowed from (Silantyev et al., 2008; Silantyev et al., 2023).

Download (220KB)
7. Fig. 6. Covariations of Cl content and MgO content in quenched glasses of the Puy de Fol volcano. The green arrow corresponds to the trend of contamination of magmatic melt by the hydrothermal component.

Download (167KB)
8. Fig. 7. Isotopic composition of strontium and neodymium in the studied quenched glasses. The MORB composition field, presented according to (Kostitsyn, 2004), is shown in pale blue. The composition of the depleted mantle (DM) is presented according to (Workman, Hart, 2005). Other symbols are as in Fig. 6.

Download (240KB)
9. Fig. 8. Lead isotope composition in quenched glasses of the Puy de Fol volcano. For comparison, the points of lead isotope composition in basalts of the MAR rift valley according to (Shirey et al., 1987; Sun, McDonough, 1989; Dosso et al., 1991; Skolotnev, 2014) and from the MAR region 16°07’ – 16°10’ N (Silantyev et al., 2008) are shown.

Download (225KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».