Shaka Ridge (South Atlantic): a Remnant of Continental Crust?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

As a result of a study of igneous rocks of the basalt — andesite series, dredged on the Shaka Ridge in the South Atlantic, it was found that they differ from the basalts of mid-ocean ridges and ocean islands, and have an age of 183–186 Ma, corresponding to the time of manifestation of the Karoo-Mod mantle plume in central Gondwana. The input of ice-rafted debris into the study area due to ice transportion is considered unlikely. Geochemical and isotopic features of the studied igneous rocks show their similarity with the Jurassic mafic complexes of the Ferrar province in Antarctica and the Falkland Islands, formed during the intrusion of the Karoo Maud plume and paleo-Pacific subduction. Based on the all data obtained, it was concluded that the Shaka Ridge is a continental block that was moved during the opening of the South Atlantic in the Early Cretaceous-Early Miocene from the continental margin of Africa along an extended transform fault into the present Bouvet triple junction area.

Full Text

Restricted Access

About the authors

N. М. Sushchevskaya

Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academу of Sciences

Author for correspondence.
Email: nadyas@geokhi.ru
Russian Federation, Moscow

G. L. Leychenkov

Gramberg All-Russia Scientific Research Institute for Geology and Mineral Resources of the World Ocean; Saint Petersburg State University

Email: german_l@mail.ru
Russian Federation, Saint Petersburg; Saint Petersburg

B. V. Belyatsky

Karpinsky All-Russia Research Geological Institute

Email: bbelyatsky@mail.ru
Russian Federation, Saint Petersburg

D. A. Agapitova

Gramberg All-Russia Scientific Research Institute for Geology and Mineral Resources of the World Ocean

Email: nadyas@geokhi.ru
Russian Federation, Saint Petersburg

References

  1. Беляцкий Б.В., Антонов А.В., Крымский Р.Ш., Лепехина Е.Н., Мигдисова Н.А., Сущевская Н.М. (2010) Изотопно-геохимические особенности состава толеитов хребта Шписс (Южная Атлантика). XIX Симпозиум по геохимии изотопов. Москва: ГЕОХИ РАН, 29–32.
  2. Дубинин Е.П., Сущевская Н.М., Грохольский А.Л. (1999) История развития спрединговых хребтов Южной Атлантики и пространственно-временное положение тройного соединения Буве. Российский журнал наук о Земле 1 (5), 423–443.
  3. Дубинин Е.П., Рыжова Д.А., Чупахина А.И., Грохольский А.Л., Булычев А.А. (2023) Строение литосферы и условия формирования подводных поднятий приантарктической части Южной Атлантики на основе плотностного и физического моделирования. Геотектоника 4, 32–55. doi: 10.31857/S0016853X23040057
  4. Дубинин Е.П., Кохан А.В., Сущевская Н.М. (2024) Тектоническое строение и эволюция литосферы приантарктической части Южной Атлантики. Океанология 64 (1), 94–111. doi: 10.31857/S0030157424010072
  5. Лейченков Г.Л., Сущевская Н.М., Беляцкий Б.В. (2003) Геодинамика атлантического и индийского секторов Южного океана. ДАН 391 (2), 228–231.
  6. Лейченков Г.Л, Дубинин Е.П., Грохольский А.Л., Агранов Г.Д. (2018) Формирование и развитие микроконтинентов плато Кергелен, Южная часть индийского океана. Геотектоника. 5. 3–21.
  7. Мигдисова Н.А., Соболев А.В., Сущевская Н.М., Дубинин Е.П., Кузьмин Д.В. (2017) Мантийная гетерогенность в районе тройного сочленения Буве по составам оливиновых вкрапленников. Геология и геофизика 58 (11), 1633–1648. doi: 10.15372/GiG20171102.
  8. Родионов Н.В., Беляцкий Б.В., Антонов А.В., Пресняков С.Л., Сергеев С.А. (2009) Уран-свинцовый возраст бадделеита (ионный микрозонд SHRIMP-II) и его использование для датирования карбонатитовых массивов. ДАН 428 (2), 244–248.
  9. Румянцева Н.А., Ванштейн Б.Г., Скублов С.Г. (2021) Петрохимическая характеристика толеитов хребта Шака (Южная Атлантика). Записки Горного Института 248, 223–231. doi: 10.31897/PMI.2021.2.6
  10. Румянцева Н.А., Скублов С.Г., Ванштейн Б.Г., Ли С.-Х., Ли Ч.-Л. (2022) Циркон из габброидов хребта Шака (Южная Атлантика): U-Pb возраст, соотношение изотопов кислорода и редкоэлементный состав. Записки РМО CLI (1), 44–73. doi: 10.31857/S0869605522010099
  11. Румянцева Н.А., Березин А.В., Ванштейн Б.Г., Скублов С.Г (2023) Состав клинопироксена как индикатор условий кристаллизации габброидов из хребта Шака (Южная Атлантика). Новые данные о минералах 57 (1), 14–23. doi: 10.25993/FM.2023.57.2023.002
  12. Сущевская Н.М., Коптев-Дворников Е.В., Пейве А.А., Хворов Д.М., Беляцкий Б.В., Каменецкий В.С., Мигдисова Н.А., Сколотнев С.Г. (1999) Особенности процесса кристаллизации и геохимии толеитовых магм западного окончания Африкано-Антарктического хребта (хребет Шписс) в районе тройного сочленения Буве. Российский журнал наук о Земле. 1 (3), 221–250.
  13. Сущевская Н.М., Мигдисова Н.А., Дубинин Е.П., Беляцкий Б.В. (2016) Региональные и локальные аномалии магматизма и особенности тектоники рифтовых зон между Антарктической и Южно-Американской плитами. Геохимия (6), 505–521. doi: 10.7868/S0016752516050101.
  14. Sushchevskaya N.M., Migdisova N.A., Dubinin E.P., Belyatsky B.V. (2016) Regional and local magmatic anomalies and tectonics of rift zones between the Antarctic and South American plates. Geochem. Int. 54(6), 494–508. doi: 10.1134/S0016702916050104
  15. Сущевская Н.М., Лейченков Г.Л., Беляцкий Б.В., Жилкина А.В. (2022) Эволюция плюма Кару-Мод и его влияние на формирование мезозойских магматических провинций в Антарктиде. Геохимия, 67 (6), 503–525. doi: 10.31857/S0016752522060097.
  16. Sushchevskaya N.M., Leitchenkov G.L., Belyatsky B.V., Zhilkina A.V. (2022) Evolution of the Karoo-Maud plume and formation of Mesozoic igneous provinces in Antarctica. Geochem. Int.60 (6), 509–529. doi: 10.1134/S001670292206009X
  17. Allen R.B., Tucholke B.E. (1981) Petrography and implications of continental rocks from the Agulhas Plateau, southwest Indian Ocean. Geology 9 (10), 463–468. doi: 10.1130/0091–7613(1981)9<463:PAIOCR>2.0.CO;2
  18. Allibon J., Ovtcharova M., Bussy F., Cosca M., Schaltegger U., Bussien D., Lewin E. (2011) Lifetime of an ocean island volcano feeder zone: constraints from U-Pb dating on coexisting zircon and baddeleyite, and 40Ar/39Ar age determinations, Fuerteventura, Canary Islands. Canadian J. Earth Sci. 48, 567–592. doi: 10.1139/E10–032
  19. Armienti P., Longo P. (2011) Three-dimensional representation of geochemical data from a multidimensional compositional space. Intern. J. Geosci. 2(3), 231–239. doi: 10.4236/ijg.2011.23025
  20. Bastias J., Spikings R., Riley T., Ulianov A., Grunow A., Chiaradia M., Hervé F. (2021) Data on the arc magmatism developed in the Antarctic Peninsula and Patagonia during the Late Triassic–Jurassic: A compilation of new and previous geochronology, geochemistry and isotopic tracing results. Data in Brief. 36, 107042. doi: 10.1016/j.dib.2021.107042
  21. Bigg G.R. (2020) The impact of icebergs of sub-Antarctic origin on Southern Ocean ice-rafted debris distributions. Quaternary Science Reviews. 232, 106204. doi: 10.1016/j.quascirev.2020.106204
  22. Bonatti E., Ligi M., Borsetti A.M., Gasperini L., Negri A., Sartori R. (1996) Lower Cretaceous deposits trapped near the equatorial Mid-Atlantic Ridge. Nature. 380 (6574), 518–520. doi: 10.1038/380518a0
  23. Brekke H., Sandsta N.R., Minakov A., Tkacheva D., Vakueva O., Pedersen R.B., Sushchevskaya N., Faleide J.I., Zarubin S., Alekseyev A., Nikitina D., Sand M., Leitchenkov G., Cherkashov G. (2016) Visiting the Shaka Ridge — a part of the Bouvet hotspot trail. Abstract to 35 IGC Paper N 3560.
  24. Cannat M., Rommevaux-Jestin C., Fujimoto H. (2003) Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61 ° to 69 °E). Geochem. Geophys. Geosyst. 4 (8), 9104. doi: 10.1029/2002GC000480
  25. Cannat M., Sauter D., Bezos A., Meyzen C., Humler E., LeRigoleur M. (2008) Spreading rate, spreading obliquity, and melt supply at the ultraslow spreading Southwest Indian Ridge. Geochem. Geophys. Geosyst 9(4), Q04002. doi: 10.1029/2007GC001676
  26. Clark R., Edwards E., Luxton S., Shipp T., Wilson P. (1995) Geology in the Falkland Islands. Geology Today 11 (6), 217–223. doi: 10.1111/j.1365–2451.1995.tb00115.x
  27. Clapperton C.M. (2017) Evidence of cirque glaciation in the Falkland Islands. Journal of Glaciology 10(58), 121–125. doi: 10.3189/S0022143000013058
  28. Cook C.P., Hemming S.R., van der Flierdt T., Pierce Davis E.L., Williams T., Galindo A.L., Jimenez-Espejo F.J., Escutia C. (2017) Glacial erosion of East Antarctica in the Pliocene: a comparative study of multiple marine sediment provenance tracers. Chem. Geol. 466, 199–218. doi: 10.1016/j.chemgeo.2017.06.011
  29. Compston W., Williams I.S., Meyer C. (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J. Geophys. Res. 89, B525-B534. doi: 10.1029/JB089iS02p0B525
  30. Cullen D.J. (1962) The significance of a glacial erratic from the Chatham Rise, east of New Zealand. New Zealand Journal of Geology and Geophysics 5(2), 309–313. doi: 10.1080/00288306.1962.10423119
  31. Dalziel I.W.D., Lawver L.A., Murphy J.B. (2000) Plumes, orogenesis, and supercontinental fragmentation. Earth Planet. Sci. Lett. 178, 1–11. doi: 10.1016/S0012–821X(00)00061–3
  32. Elliot D.H., Fleming T.H. (2000) Weddell triple junction: the principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana. Geology 28, 539–542. doi: 10.1130/0091–7613(2000)28<539:WTJTPF>2.0.CO;2
  33. Elliot D.H., Fleming T.H. (2021) Ferrar large igneous province: petrology. Geological Society, London, Memoirs 55, 93–119. doi: 10.1144/M55–2018-39
  34. Ford A.B. (1976) Stratigraphy of the layered gabbroic Dufek intrusion, Antarctica. Geological Survey Bulletin 1405-D, 1–36. doi: 10.3133/b1405D
  35. Gasperini L., Bernoulli D., Bonatti E., Borsetti A.M., Ligi M., Negri A., Sartori R., von Salis K. (2001) Lower Cretaceous to Eocene sedimentary transverse ridge at the Romanche Fracture Zone and the opening of the equatorial Atlantic. Marine Geology 176, 101–119. doi: 10.1016/S0025–3227(01)00146–3
  36. Georgen J.E., Lin J., Dick H.J.B. (2001) Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: effects of transform offsets. Earth Planet. Sci. Lett. 187, 283–300. doi: 10.1016/S0012–821X(01)00293-X
  37. Groshev N.Yu., Pripachkin P.V., Karykowski B.T., Malygina A.V., Rodionov N.V., Belyatsky B.V. (2018) Genesis of a magnetite layer in the Gabbro-10 intrusion, Monchegorsk Complex, Kola Region: U–Pb SHRIMP-II dating of metadiorites. Geology of Ore Deposits 60, (6), 486–496. doi: 10.1134/S1075701518060028
  38. Hastie W.W., Watkeys M.K., Aubourg C. (2014) Magma flow in dyke swarms of the Karoo LIP: implications for the mantle plume hypothesis. Gondwana Research 25, 736–755. doi: 10.1016/j.gr.2013.08.010
  39. Heaman L.M. (2009) The application of U–Pb geochronology to mafic, ultramafic and alkaline rocks: an evaluation of three mineral standards. Chem. Geol. 261, 43–52. doi: 10.1016/j.chemgeo.2008.10.021
  40. Hergt J.M., Chappell B.W., Faure G., Mensing T.M. (1989) The geochemistry of Jurassic dolerites from Portal Peak, Antarctica. Contrib. Mineral. Petrol. 102, 298–305. doi: 10.1007/BF00373722
  41. Hinthorne J.R., Andersen C.A., Conrad R.L., Lovering J.F. (1979) Single-grain 207Pb/206Pb and U/Pb age determinations with a 10 mkm spatial resolution using the ion microprobe mass analyzer (IMMA). Chem. Geol. 25, 271–303. doi: 10.1016/0009–2541(79)90061–5
  42. Hofmann A.W. (2007) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace element. Treatise on Geochemistry 2, 1–44. doi: 10.1016/B0–08-043751–6/02123-X
  43. Hole M.J., Ellam R.M., Macdonald D.I.M., Kelley S.P. (2016) Gondwana break-up related magmatism in the Falkland Islands. Journal of the Geological Society, London 173, 108–126. doi: 10.1144/jgs2015–027
  44. Hoyer P.A., Haase K.M., Regelous M., O’Connor J.M., Homrighausen S., Geissler W.H., Jokat W. (2022) Mantle plume and rift-related volcanism during the evolution of the Rio Grande Rise. Communications Earth & Environment 3, 1–18. doi: 10.1038/s43247–022-00349–1
  45. Jokat W., Hagen C. (2017) Crustal structure of the Agulhas Ridge (South Atlantic Ocean): Formation above a hotspot? Tectonophysics 716, 21–32. doi: 10.1016/j.tecto.2016.08.011
  46. Kamenetsky V.S., Maas R., Sushchevskaya N.M., Norman M.D., Cartwright I., Peyve A.A. (2001) Remnants of Gondwanan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge. Geology 29 (3), 243–246. doi: 10.1130/0091–7613(2001)029<0243:ROGCLI>2.0.CO;2
  47. Kurz M.D., Le Roex A.P., Dick H. (1998) Isotope geochemistry of oceanic mantle near the Bouvet triple junction. Geochim. Cosmochim. Acta 62 (5), 841–852. doi: 10.1016/S0016–7037(97)00383–9
  48. Kyle P.R. (1980) Development of heterogeneities in the subcontinental mantle: evidence from the Ferrar Group, Antarctica. Contrib. Mineral. Petrol. 73, 89–104. doi: 10.1007/BF00376262
  49. Kyle P.R., Elliot D.H., Sutter J.F. (1981) Jurassic Ferrar Supergroup tholeiites from the Transantarctic Mountains, Antarctica, and their relation to the initial fragmentation of Gondwana. Gondwana Five: Proceedings of the Fifth Gondwana Symposium. Cresswall M.M., Vella P. (eds). A.A. Balkema, Rotterdam, 283–287.
  50. LeRoex A.P., Dick H.J.B., Erlank A.J., Reid A.M., Frey F.A., Hart S.R. (1983) Geochemistry, mineralogy and petrogenesis of lavas erupted along the Southwest Indian Ridge between the Bouvet Triple Junction and 11 °E.J. Petrol. 24, 267–318. doi: 10.1093/petrology/24.3.267
  51. Licht K.J., Hemming S.R. (2017) Analysis of Antarctic glacigenic sediment provenance through geochemical and petrologic applications. Quaternary Science Reviews 164, 1–24. doi: 10.1016/j.quascirev.2017.03.009
  52. Lin J., Georgen J.E., Dick H. (2003) Ridge-hotspot interactions at ultra-slow spreading conditions: Bouvet/Marion hotspots and the SW Indian Ridge. Abstrats. InterRidge Symposium and workshop. Ridge-hotspot interaction: Recent Progress and Prospects for Enhanced International Collaboration. Brest. France. 30.
  53. Ludwig K.R. (2000) SQUID 1.00, a user’s manual. BGC Special Publication No.2, 2455 Ridge Road, Berkeley, CA 94709, USA.
  54. Ludwig K.R. (2003) User’s manual for Isoplot/Ex 3.0, A geochronological toolkit for Microsoft Excel. BGC Special Publication No.1a, 2455 Ridge Road, Berkeley CA 94709, USA.
  55. McDonough W., Sun S.S. (1995) The composition of the Earth. Chem. Geol 120 (3–4), 223–253. doi: 10.1016/0009–2541(94)00140–4
  56. McKay R., Albot O., Dunbar G.B., Lee J.I., Lee M.K., Yoo K.-C., Kim S., Turton N., Kulhanek D., Patterson M., Levy R. (2022) A comparison of methods for identifying and quantifying ice rafted debris on the Antarctic margin. Paleoceanography and Paleoclimatology 37, e2021PA004404. doi: 10.1029/2021PA004404
  57. Migdisova N.A., Sushchevskaya N.M., Luttinen A.V., Mikhal’skii E.M. (2004) Variations in the composition of clinopyroxene from the basalts of various geodynamic settings of the Antarctic region. Petrology 12 (2), 206–224.
  58. Miles P. (2012) Structural map of the Atlantic Ocean. CGMW. Paris, 1 sheet.
  59. Mitchell C., Ellam R.M., Cox K.G. (1999) Mesozoic dolerite dykes of the Falkland Islands: petrology, petrogenesis and implications for geochemical provinciality in Gondwanaland low-Ti basaltic rocks. Journal of the Geological Society, London 156, 901–916. doi: 10.1144/gsjgs.156.5.0901
  60. Needham H.D. (1962). Ice-rafted rocks from the Atlantic Ocean off the coast of the Cape of Good Hope. Deep-Sea Research 9, 475–486. doi: 10.1016/0011–7471(62)90098–0
  61. Nielsen S.H.H., Hodell D.A., Kamenov G., Guilderson T., Perfit M.R. (2007) Origin and significance of ice-rafted detritus in the Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosyst. 8 (12), Q12005. doi: 10.1029/2007GC001618
  62. Pankhurst R.J., Riley T.R., Fanning C.M., Kelley S.P. (2000) Episodic silicic volcanism in Patagonia and Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. J. Petrol. 41(5), 605–625. doi: 10.1093/petrology/41.5.605
  63. Parsiegla N., Gohl K., Uenzelmann-Neben G. (2008) The Agulhas Plateau: structure and evolution of a Large Igneous Province. Geophys. J. Int. 174, 336–350. doi: 10.1111/j.1365–246X.2008.03808.x
  64. Richards P.C., Stone P., Kimbell G.S., Mcintosh W.C., Phillips E.R. (2013) Mesozoic magmatism in the Falkland Islands (South Atlantic) and their offshore sedimentary basins. Journal of Petroleum Geology 36(1), 61–74. doi: 10.1111/jpg.12542
  65. Riley T.R., Leat Ph.T., Storey B.C., Parkinson I.J., Millar I.L. (2003) Ultramafic lamprophyres of the Ferrar large igneous province: evidence for a HIMU mantle component. Lithos 66, 63–76. doi: 10.1016/S0024–4937(02)00213-X
  66. Riley T.R., Curtis M.L., Leat P.T., Watkeys M.K., Duncan R.A., Millar I.L., Owens W.H. (2006) Overlap of Karoo and Ferrar magma types in KwaZulu–Natal, South Africa. J. Petrol. 47, 541–556. doi: 10.1093/petrology/egi085
  67. Rodionov N.V., Belyatsky B.V., Antonov A.V., Kapitonov I.N., Sergeev S.A. (2012) Comparative in-situ U-Th-Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline-ultramafic complex, Kola Peninsula, Russia. Gondwana Research 21 (4), 728–744. doi: 10.1016/j.gr.2011.10.005
  68. Rumyantseva N.A., Skublov S.G., Vanshtein B.G., Li X.H., Li Q. (2022) Zircon from gabbroids of the Shaka Ridge (South Atlantic): U–Pb age, oxygen isotope ratios, and trace element composition. Geology of Ore Deposits 64(8), 622–645. doi: 10.1134/S1075701522080104
  69. Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E., Francis R. (2014) New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346 (6205), 65–67. doi: 10.1126/science.1258213
  70. Sato H., Machida S., Meyzen C.M., Ishizuka O., Senda R., Bizimis M., et al. (2024) The Conrad Rise revisited: Eocene to Miocene volcanism and its implications for magma sources and tectonic development. J. Geophys. Res.129, e2023JB027380. doi: 10.1029/2023JB027380
  71. Summary of recommendations of the commission on the limits of the continental shelf in regard to the submission made by Norway in respect of Bouvet and Dronning Maud Land on 4 may 2009. UN Convention on the Law of the Sea, 2016–2019, 1–43. https://2019_02_08_com_sumrec_nor.pdf (последнее обращение 30.06.2024)
  72. Uenzelmann-Neben G., Gohl K. (2004) The Agulhas Ridge, South Atlantic: the peculiar structure of a fracture zone. Marine Geophys Res. 25, 305–319. doi: 10.1007/s11001–005-1338–8
  73. White R.S., McKenzie D. (1989) Magmatism at rift zones the generation of volcanic continental margins and flood basalts. J. Geophys. Res. 94, 7685–7730. doi: 10.1029/JB094iB06p07685

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Area of operations of the R/V ‘Akademik Fedorov’ 2016 within the Shaka Ridge. (a) Gravity field (free air reduction) of the South Atlantic Ocean (altimetry data, Sandwell et al., 2014). The frame shows the study area. AAH - American-Antarctic Ridge; CA - Agulhas Basin, PA - Agulhas Plateau, PM - Meteor Rise, PSVG - Northeast Georgia Rise, MAH - Mid-Atlantic Ridge, HA - Agulhas Ridge, TRA - Agulhas Transform Fault, FP - Falkland Plateau, SWIH - Southwest Indian Ridge, SSIH - South Sandwich Islands. (b) Bathymetry of the Shaka Ridge area (Summary of recommendations..., 2019 as supplemented). Red dots show 2016 dredge station numbers. Yellow dots show Woods Hole Oceanographic Institution dredge stations conducted in 1982 (in the southern part of TR Shaka) and 2001 (in the central part of Shaka Ridge). TR - transform fault, SWIH - Southwest Indian Ridge

Download (722KB)
3. Fig. 2. Main element oxide content (wt %) in gabbro-dolerites of the Shaka Ridge. 1 - data of Table 1, 2 - data (Rumyantseva et al., 2021), 3 - 2017 data (see electronic appendix, Table S1), 4 - basalts of the Bouvet triple junction (TSB) region according to data (Suschevskaya et al., 1999). The field shows tholeiites of the TSB

Download (127KB)
4. Fig. 3. Microphotographs of a transparent-polished slip of dolerite sample FB-1-1-2. a - transmitted light (parallel nicols); b - transmitted light (nicols crossed); c - backscattered electrons; d - colour-coded image: red - plagioclase (47%), yellow - pyroxene (augite) (22%), green - pyroxene (pigeonite) (28%), light blue - olivine (2%), blue - ilmenite (1%), purple - titanomagnetite (< 1%)

Download (884KB)
5. Fig. 4. Uranium-lead diagrams with concordia in Tera-Wasserburg coordinates for measured unit grains of baddeleyite from dolerite samples from dredging stations on the Shaka Ridge: a - station 1, sample FB-1-1-2; b - station 3, sample FB-3-1-1. Correction for the fraction of conventional (non-radiogenic) lead was introduced based on the measured 208 isotope content (208Pb method). The insets show the studied baddeleyite grains, optical image in transmitted light. 206Pb* - fraction of radiogenic Pb (see text)

Download (309KB)
6. Fig. 5. REE distribution (local SHRIMP-IIe analysis) in the studied baddeleyites of dolerite sample FB-3-1-1 (blue lines), for comparison we show: REE composition in baddeleyite of Proterozoic dolerite dykes of the Karelian block (dark grey field) and basite-ultrabasite rocks of the Monchegorsk stratified complex (Groshev et al, 2018), the Baltic Shield (light grey field), and the REE composition of the host baddeleyite rock (red line)

Download (248KB)
7. Fig. 6. Variations of the isotopic composition of the Shaka Ridge dolerites and TSB basalts in coordinates of isotopic ratios: 206Pb/204Pb - 207Pb/204Pb (a); 206Pb/204Pb - 208Pb/204Pb (b); 206Pb/204Pb - 143Nd/144Nd (c). 1 - basalts of the Bouvet Triple Junction, 2 - dolerite from Bouvet Island (Kurz et al., 1998), 3 - dolerites of Bouvet Island (unpublished data, Belyatsky), 4 - dolerites of Shaka Ridge, with correction for radiogenic component and age 180 Ma (Table 2)

Download (98KB)
8. Fig. 7. Spectra of the lithophile elements content normalised to the primitive mantle composition (McDounagh and Sun, 1995) (spider diagrams) for the rocks of the Shaka Ridge (see the electronic appendix, Table S1), basalts of the TSB area and the Ferrar magmatic province (Antarctica) according to (Suschevskaya et al., 1999, 2022)

Download (525KB)
9. Fig. 8. Variations in the composition of mafic rocks of the Shaka Ridge and magmas associated with the Karu-Mod plume: in MgO - TiO2 coordinates (a); 87Sr/86Sr - 206Pb/204Pb (b); 206Pb/204Pb - 208Pb/204Pb (c). (a) magmas of provinces: ZKM (1), Karoo (2), Ferrar (3) by (Suschevskaya et al., 2023); Shaka Ridge (4) (Table 1); Falkland Islands (5) by (Hole et al., 2016). (b, c) low-titaniferous magma type of the Karoo Province (1); high-titaniferous magma type of the Karoo Province (2); basaltic magmas of the Queen Maud Land (3); basaltic melts of the Ferrar Province (4) by (Suschevskaya et al, 2023); igneous lamprophyres of the central part of Ferrar Province (5) (Riley et al., 2003); dolerites of the Shaka Ridge (6) (Table 2); rocks of the Falkland Islands (7) by (Hole et al., 2016); dolerites of Bouvet Island (8) (unpublished data, Belyatsky). Grey circles show model mantle sources (DM, EMI, EMII) according to (Armienti and Longo, 2011). Fields delineate individual provinces: high- and low-titanic basalts of the Karoo province, and others associated with the activity of the Karoo-Mod plume. The isotopic composition is recalculated to the corresponding age of emplacement

Download (286KB)
10. Fig. 9. Reconstruction of Gondwana at 180 Ma. 1 - manifestation of the main magmatism with the age of about 180 Ma, caused by the mantle plume Karoo-Mod, 2 - the area of manifestation of the Karoo(Africa)-Mod plume (WQM, Antarctica) in the lithosphere of central Gondwana according to (White and McKenzie, 1989), 3 - Ferrar province, Jurassic magmatism of the Transantartic Mountains associated with the Karoo-Mod plume (Suschevskaya et al., 2022), 4 - subduction zone. WA - East Antarctica, WA - West Antarctica, GCM - Queen Maud Land, GC - Cotes Land, FP - Falkland Plateau, TAG - Transantarctic Mountains, FO - Falkland Islands. The continental block of the Shaka Ridge was located between the tip of the Falkland Plateau, East Antarctica and South Africa

Download (222KB)
11. Fig. 10. Position of the palaeotransform fault within which the blocks of continental crust forming the Shaka Ridge may have moved (shown in bold black line). a - structural-tectonic scheme of the South Atlantic (Miles, 2012); b - gravity field (reduction in free air) of the South Atlantic according to satellite altimetry data (Sandwell et al., 2014)

Download (615KB)
12. Supplementary
Download (540KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».