Seasonal dynamics of CH4 and CO2 concentrations in the bog lake Severnoe

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bog and lake ecosystems of the boreal region are recognized as important parts of the global biogeochemical carbon cycle. At the same time, many aspects of the dynamics of the gas conditions of bog lakes remain understudied. The paper presents the results of the study of seasonal dynamics of dissolved CH4 and CO2 concentrations in the bog lake located in the ridge-lake complex of the Ilassky bog complex, a typical raised bogs of the northern taiga of northwestern Russia. An analysis of the seasonal vertical distribution of greenhouse gases in the water column and the dynamics of surface concentrations with increased time resolution was performed. The reasons and patterns of their variability are considered, including in relation to the characteristics of bottom sediments. Concentrations of CH4 and CO2 in the water column during the year vary in wide ranges: from 4 to 652 µg/l and from 0.19 to 19 mg/l, respectively. CH4 concentrations in surface layer are approximately at the same level from May through August, with values measured in the water (5.9 to 11 µg/L) more than one hundred times higher than equilibrium concentrations with the atmosphere (0.04 to 0.05 µg/L), indicating methane flux to the atmosphere. CO2 concentrations decrease throughout the open water period and become below equilibrium concentrations with the atmosphere by the end of August, indicating a change in the flux direction and uptake of CO2 from the atmosphere. The results showed that, depending on the season, a bog lake can act not only as a source but also as a sink for atmospheric carbon, 90–99 % of which is CO2 according to literature.

Full Text

Restricted Access

About the authors

S. D. Prasolov

Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: sergeyprasolov1@gmail.com
Russian Federation, Nikolskiy prospekt, 20, Arkhangeksk, 163020

S. A. Zabelina

Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences

Email: sergeyprasolov1@gmail.com
Russian Federation, Nikolskiy prospekt, 20, Arkhangeksk, 163020

S. I. Klimov

Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences

Email: sergeyprasolov1@gmail.com
Russian Federation, Nikolskiy prospekt, 20, Arkhangeksk, 163020

A. V. Chupakov

Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences

Email: sergeyprasolov1@gmail.com
Russian Federation, Nikolskiy prospekt, 20, Arkhangeksk, 163020

G. N. Losyuk

Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences

Email: sergeyprasolov1@gmail.com
Russian Federation, Nikolskiy prospekt, 20, Arkhangeksk, 163020

References

  1. Бикбулатов Э.С. (ред.) (1993) Органическое вещество донных отложений волжских водохранилищ. Труды ИБВВ РАН, вып. 66 (69). С.-Пб.: Гидрометеоиздат, 144 с.
  2. Вахрамеева Е.А., Кокрятская Н.М. (2019) Гранулометрический состав донных отложений меромиктических озер (бассейн Белого моря). Геология морей и океанов: Материалы XXIII Международной научной конференции (Школы) по морской геологии. Том 3. М.: Институт океанологии им. П.П. Ширшова Российской академии наук, 115–118.
  3. Глаголев М.В., Клепцова И.Е., Казанцев В.С., Филиппов И.В., Максютов Ш.Ш. (2010) Эмиссия метана из болотных ландшафтов тундры. Вестник Томского государственного педагогического университета. 3 (93), 78–86.
  4. Глаголев М.В., Сирин А.А., Лапшина Е.Д., Филиппов И.В. (2010а) Изучение потоков углеродсодержащих парниковых газов в болотных экосистемах Западной Сибири. Вестник Томского государственного педагогического университета. 3 (93), 120–127.
  5. Глаголев М.В. (2010) Аннотированный список литературных источников по результатам измерений потоков СН4 и СО2 на болотах России. Динамика окружающей среды и глобальные изменения климата. 1 (2).
  6. Голубятников Л.Л., Казанцев В.С. (2013) Вклад тундровых озер западной Сибири в метановый бюджет атмосферы. Известия РАН. Физика атмосферы и океана. 49 (4), 430–438. doi: 10.7868/S0002351513040044.
  7. Давыдов Д.К., Краснов О.А., Симоненков Д.В., Фофонов А.В., Головацкая Е.А., Максютов Ш.Ш. (2022) Исследования потоков парниковых газов в болотных экосистемах (участок Плотниково Бакчарского болота). Геосферные исследования. 4, 67–75. doi: 10.17223/25421379/25/4.
  8. Добровольская Т.Г., Головченко А.В., Звягинцев Д.Г., Инишева Л.И., Кураков А.В., Смагин А.В., Зенова Г.М., Лысак Л.В., Семенова Т.А., Степанов А.Л., Глушакова А.М., Початкова Т.Н., Кухаренко О.С., Качалкин А.В., Якушев А.В., Поздняков Л.А., Богданова О.Ю. (2013) Функционирование микробных комплексов верховых торфяников – анализ причин медленной деструкции торфа / Под ред. И.Ю. Чернова. М.: Товарищество научных изданий КМК, 128 с.
  9. Жила И.М., Алюшкинская Н.М. (1972) Ресурсы поверхностных вод СССР. Т. 3: Северный край. Л.: Гидрометиздат, 663 с.
  10. Кривенок Л.А., Глаголев М.В., Фастовец И.А., Смоленцев Б.А., Максютов Ш.Ш. (2014) Удельные потоки метана из экосистем южной тундры Западной Сибири. Динамика окружающей среды и глобальные изменения климата. 5 (1), 26–42.
  11. Мартынова М.В. (2010) Донные отложения как составляющая лимнических экосистем. М.: Наука, 242 с.
  12. Потахин М.С. (2006) Обзор классификаций водоемов Карелии. Водная среда Карелии: исследование, использование, охрана. Материалы II республиканской школы-конференции молодых ученых (20–21.02.2006). Петрозаводск: КарНЦ РАН, 16–21.
  13. Романовская А.А. (ред.) (2023) Оценка потоков парниковых газов в экосистемах регионов Российской Федерации. М.: ИГКЭ, ООО “Принт”, 343 с.
  14. Селянина С.Б., Труфанова М.В., Ярыгина О.Н., Орлов А.С., Пономарева Т.И., Титова К.В., Зубов И.Н. (2017) Особенности биотрансформации органических веществ в условиях болотных экосистем Севера (на примере Иласского болотного массива). Труды института биологии внутренних вод им. И.Д. Папанина РАН. 79 (82), 200–206. doi: 10.24411/0320-3557-2017-10040.
  15. Федоров Ю.А., Гарькуша Д.И., Хромов М.И. (2008) Эмиссия метана с торфяных залежей Иласского болотного массива Архангельской области. Известия Русского географического общества. 140 (5), 40–47.
  16. Хатчинсон Д.Э. (1969) Лимнология: географические, физические и химические характеристики озер. М.: Прогресс, 591 с.
  17. Arsenault J., Talbot J., Moore T.R. (2018) Environmental controls of C, N and P biogeochemistry in peatland pools. Sci. Total Environ. 631–632, 714–722. doi: 10.1016/j.scitotenv.2018.03.064.
  18. Bastviken D., Cole J. Pace M., Tranvik L. (2004) Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles. 18 (4). doi: 10.1029/2004GB002238.
  19. Cole J., Caraco N., Kling G., Kratz T. (1994) Carbon Dioxide Supersaturation in the Surface Waters of Lakes. Science. 265 (5178), 1568–1570. doi: 10.1126/science.265.5178.1568.
  20. Dean J.F., Meisel O.H., Martyn Rosco M., Marchesini L.B., Garnett M.H., Lenderink H., van Logtestijn R., Borges A.V., Bouillon S., Lambert T., Röckmann T., Maximov T., Petrov R., Karsanaev S., Aerts R., van Huissteden J., Vonk J.E., Dolman A.J. (2020) East Siberian Arctic inland waters emit mostly contemporary carbon. Nat. Commun. 11(1), 1627. doi: 10.1038/s41467-020-15511-6.
  21. Downing J.A. (2010) Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29 (1), 9–24. doi: 10.23818/limn.29.02.
  22. Ford P.W., Boon P.I., Lee K. (2002) Methane and oxygen dynamics in a shallow floodplain lake: the significance of periodic stratification. Hydrobiologia 485 (1), 97–110. doi: 10.1023/A:1021379532665.
  23. Forster P., Storelvmo T., Armour K., Collins W., Dufresne J.-L., Frame D., Lunt D.J., Mauritsen T., Palmer M.D., Watanabe M., Wild M., Zhang H. (2021) The Earth’s energy budget, climate feedbacks, and climate sensitivity. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 923–1054.
  24. Golub M., Koupaei-Abyazani N., Vesala T., Mammarella I., Ojala A., Bohrer G., Weyhenmeyer G.A., Blanken P.D., Eugster W., Koebsch F., Chen J., Czajkowski K., Deshmukh C., Guérin F., Heiskanen J., Humphreys E., Jonsson A., Karlsson J., Kling G., Lee X., Liu H., Lohila A., Lundin E., Morin T., Podgrajsek E., Provenzale M., Rutgersson A., Sachs T., Sahlée E., Serça D., Shao C., Spence C., Strachan I.B., Xiao W., Desai A.R. (2023) Diel, seasonal, and inter-annual variation in carbon dioxide effluxes from lakes and reservoirs. Environ. Res. Lett. 18 (3), 034046. doi: 10.1088/1748-9326/acb834.
  25. Gulev S.K., Thorne P.W., Ahn J., Dentener F.J., Domingues C.M., Gerland S., Gong D., Kaufman D.S., Nnamchi H.C., Quaas J., Rivera J.A., Sathyendranath S., Smith S.L., Trewin B., von Schuckmann K., Vose R.S. (2021) Changing state of the climate system. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 287–422.
  26. Holgerson M.A. (2015) Drivers of carbon dioxide and methane supersaturation in small, temporary ponds. Biogeochemistry. 124 (1), 305-318. doi: 10.1007/s10533-015-0099-y.
  27. Holgerson M.A., Raymond P.A. (2016) Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9 (3), 222–26. doi: 10.1038/ngeo2654.
  28. Huotari J., Ojala A., Peltomaa E., Pumpanen J., Hari P., Vesala T. (2009) Temporal variations in surface water CO2 concentration in a boreal humic lake based on high-frequency measurements, Boreal Environ. Res. 14, 48–60.
  29. Huotari J., Ojala A., Peltomaa E., Nordbo A., Launiainen S., Pumpanen J., Rasilo T., Hari P., Vesala T. (2011) Long-term direct CO2 flux measurements over a boreal lake: Five years of eddy covariance data. Geophys. Res. Lett. 38, L18401. doi: 10.1029/2011GL048753.
  30. Jammet M., Dengel S., Kettner E., Parmentier F.-J.W., Wik M., Crill P., Friborg T. (2017) Year-round CH4 and CO2 flux dynamics in two contrasting freshwater ecosystems of the subarctic. Biogeosciences. 14 (22), 5189-5216. doi: 10.5194/bg-14-5189-2017.
  31. Karlsson J., Serikova S., Vorobyev S.N., Rocher-Ros G., Denfeld B., Pokrovsky O.S. (2021) Carbon emission from Western Siberian inland waters. Nat. Commun. 12 (1), 825. doi: 10.1038/s41467-021-21054-1.
  32. Kortelainen P., Rantakari M., Huttunen J.T., Mattsson T., Alm J., Juutinen S., Larmola T., Silvola J., Martikainen P.J. (2006) Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Global Change Biol. 12 (8), 1554–1567.
  33. Lammers S., Suess E. (1994) An improved head-space analysis method for methane in seawater. Mar. Chem. 47 (2), 115–125. doi: 10.1016/0304-4203(94)90103-1.
  34. Lundin E.J., Klaminder J., Bastviken D., Olid C., Hansson S.V., Karlsson, J. Large difference in carbon emission – burial balances between boreal and arctic lakes Sci. Rep. 5 (1), 14248. doi: 10.1038/srep14248.
  35. Marushchak M.E., Kiepe I., Biasi1 C., Elsakov V., Friborg T., Johansson T., Soegaard H., Virtanen T., Martikainen P.J. (2013) Carbon dioxide balance of subarctic tundra from plot to regional scales. Biogeosciences. 10 (1), 437–452. doi: 10.5194/bg-10-437-2013.
  36. McCallister S.L., del Giorgio P.A. (2008) Direct measurement of the d13C signature of carbon respired by bacteria in lakes: Linkages to potential carbon sources, ecosystem baseline metabolism, and CO2 fluxes. Limnol. Oceanogr. 53 (4), 1204–1216. doi: 10.4319/lo.2008.53.4.1204.
  37. Ordóñez C., DelSontro T., Langenegger T., Donis D, Suarez E.L., McGinnis D.F. (2023) Evaluation of the methane paradox in four adjacent pre-alpine lakes across a trophic gradient. Nat Commun. 14, 2165. doi: 10.1038/s41467-023-37861-7.
  38. Pelletier L., Strachan I.B., Garneau M., Roulet N.T. (2014), Carbon release from boreal peatland open water pools: Implication for the contemporary C exchange, J. Geophys. Res. Biogeosci. 119 (3), 207–222. doi: 10.1002/2013JG002423.
  39. Repo E., Huttunen J.T., Naumov A.V., Chichulin A.V., Lapshina E.D., Bleuten W., Martikainen P.J. (2007) Release of CO2 and CH4 from small wetland lakes in Western Siberia. Tellus B. 59 (5), 788–796. doi: 10.1111/j.1600-0889.2007.00301.x.
  40. Rosentreter J.A., Borges A.V., Deemer B.R., Holgerson M.A., Liu S., Song C., Melack J., Raymond P.A., Duarte C.M., Allen G.H., Olefeldt D., Poulter B., Battin T.I., Eyre B.D. (2021) Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 14 (4), 225–230. doi: 10.1038/s41561-021-00715-2.
  41. Sabrekov A.F., Runkle B.R.K., Glagolev M.V., Terentieva I.E., Stepanenko V.M., Kotsyurbenko O.R., Maksyutov S.S., Pokrovsky O.S. (2017) Variability in methane emissions from West Siberia’s shallow boreal lakes on a regional scale and its environmental controls. Biogeosciences. 14 (15), 3715–3742. doi: 10.5194/bg-14-3715-2017.
  42. Taillardat P., Linkhorst A., Deblois C., Prijac A., Gandois L., Tremblay A., Garneau M. A (2024) Carbon Source in a Carbon Sink: Carbon Dioxide and Methane Dynamics in Open‐Water Peatland Pools. Global Biogeochem. 38 (4), e2023GB007909. doi: 10.1029/2023GB007909.
  43. Weiss R.F. (1974) Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem. 2 (3), 203–215. doi: 10.1016/0304-4203(74)90015-2.
  44. Wik M., Varner R.K., Anthony K.W., MacIntyre S., Bastviken D. (2016) Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9 (2), 99–105. doi: 10.1038/ngeo2578.
  45. Yamamoto S., Alkauskas J.B., Crosier T.E. (1976) Solubility of methane in distilled water and seawater. J. Chem. Eng. Data. 21 (1). 78–80.
  46. Zabelina S.A., Shirokova L.S., Klimov S.I., Chupakov A.V., Lim A.G., Polishchuk Yu.M., Polishchuk V.Yu., Bogdanov A.N., Muratov I.N., Guerin F., Karlsson J., Pokrovsky O.S. (2021) Carbon emission from thermokarst lakes in NE European tundra. Limnol. Oceanogr. 66 (S1), 216–230. doi: 10.1002/lno.11560.
  47. Zubov I.N., Orlov A.S., Selyanina S.B., Zabelina S.A., Ponomareva T.I. (2022) Redox potential and acidity of peat are key diagnostic physicochemical properties for the stratigraphic zones of a boreal raised bog. Mires and Peat. 28. doi: 10.19189/MaP.2020.GDC.StA.1987.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map-scheme of Severnoye Lake. The location of the sampling point is marked with a star.

Download (195KB)
3. Fig. 2. Vertical distribution of (a) - water temperature and (b) - dissolved oxygen in different seasons of the year.

Download (155KB)
4. Fig. 3. Vertical distribution of (a) - CH4 concentrations and (b) - CO2 concentrations in different seasons of the year.

Download (169KB)
5. Fig. 4. Seasonal course of (a) - surface CH4 concentrations and (b) - surface CO2 concentrations. A - actual measured concentrations; B - equilibrium with the atmosphere; C - boundaries of the periods of open water and stable ice cover.

Download (179KB)
6. Fig. 5. Seasonal variations of A - dissolved O2 concentrations, B - surface water layer temperature and C - mean monthly air temperature at M-2 Kholmogory; D - boundaries of open water and stable ice cover periods.

Download (105KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».