Kichan structure of the Archean Tiksheozero greenstone belt of the Fennoscandinavian shield in the light of new geochemical and geochronological data
- Authors: Myskova T.А.1, Nikonova A.S.2, Nikonov K.А.2, Zhitnikova I.А.2, Lvov P.A.1,2
-
Affiliations:
- Institute of Precambrian Geology and Geochronology RAS
- A.P. Karpinsky Russian Geological Research Institute
- Issue: Vol 69, No 9 (2024)
- Pages: 831-856
- Section: Articles
- URL: https://journals.rcsi.science/0016-7525/article/view/272953
- DOI: https://doi.org/10.31857/S0016752524090029
- EDN: https://elibrary.ru/IYMRIQ
- ID: 272953
Cite item
Abstract
New geological, geochemical, and geochronological (U-Pb zircon) data obtained on the greenstone rocks of the Kichany structure from the Archean Tiksheozero greenstone belt made it possible to clarify and supplement the previously proposed stratification schemes. The composition of the identified sequences, the order and duration of their formation have been specified. The Archean supracrustal rocks are divided into three sequences. The lower sequence (previously not identified) is represented by a bimodal series: tholeiitic metabasalts and felsic metavolcanics, with subordinate metagraywackes. It has been formed for over 20 million years (from 2788 ± 5 to 2766 ± 9 Ma). Sm–Nd data obtained on basaltic metaandesites (Sm–Nd model age 2.86 Ga and εNd = 2.92) indicate their mantle nature. Metarhyolites from the lower sequence with a Sm–Nd model age of 2.89 Ga and εNd = 2.59 were generated from a source with a short residence time. The differentiated volcanic series of the upper sequence (from basalts to dacites) has been also formed for about 20 million years (2738 ± 7–2716 ± 7 Ma). The parental melts for the intermediate–felsic metavolcanics of the upper sequence are variably enriched in ancient crustal matter. The oldest rocks with a Sm–Nd model age of 2.84 Ga and εNd = 2.67 were formed during the Early Neoarchean crust-forming event. The younger rocks have a different contribution of ancient crustal material: significant contribution for dacites (Sm–Nd model age of 3 Ga and εNd = 0.4) and less significant contribution for dacitic andesites (Sm–Nd model age of 2.89 Ga and εNd = 1.73). In the Paleoproterozoic (from 1786 ± 11 to 1796 ± 6 Ma), the supracrustal rocks of the Kichany structure underwent metamorphic transformations.
Keywords
Full Text

About the authors
T. А. Myskova
Institute of Precambrian Geology and Geochronology RAS
Author for correspondence.
Email: tmyskova@gmail.com
Russian Federation, 199034, Nab. Makarova, 2, St. Petersburg
A. S. Nikonova
A.P. Karpinsky Russian Geological Research Institute
Email: tmyskova@gmail.com
Russian Federation, 199106, Sredny prospect, 74, St. Petersburg
K. А. Nikonov
A.P. Karpinsky Russian Geological Research Institute
Email: tmyskova@gmail.com
Russian Federation, 199106, Sredny prospect, 74, St. Petersburg
I. А. Zhitnikova
A.P. Karpinsky Russian Geological Research Institute
Email: tmyskova@gmail.com
Russian Federation, 199106, Sredny prospect, 74, St. Petersburg
P. A. Lvov
Institute of Precambrian Geology and Geochronology RAS; A.P. Karpinsky Russian Geological Research Institute
Email: tmyskova@gmail.com
Russian Federation, 199034, Nab. Makarova, 2, St. Petersburg; 199106, Sredny prospect, 74, St. Petersburg
References
- Бибикова Е.В., Самсонов А.В., Щипанский А.А., Грачева Т.В., Макаров В.А. (2003) Хизоваарская структура Северо-Карельского зеленокаменного пояса как аккретированная островная дуга позднего архея: изотопно-геохронологические и петрологические данные. Петрология. 11(3), 289–320.
- Государственная геологическая карта РФ масштаба 1:1 000 000 (третье поколение). Серия Балтийская. Лист Q-(35), 36 (Апатиты). Объяснительная записка. СПб.: Картографическая фабрика ВСЕГЕИ. 2012. 487 с.
- Государственная геологическая карта РФ масштаба 1:200 000 (издание второе). Лист Q–36-XXI, XXII (Амбарный). Объяснительная записка. М.: МФ ВСЕГЕИ. 2013. 189 с.
- Другова Г.М., Левченков О.А., Савельева Т.Е. (1995) Гранитоиды раннего докембрия в Северо-Западном Беломорье // Записки ВМО. 124(1), 35–51.
- Кожевников В.Н. (2000) Архейские зеленокаменные пояса Карельского кратона как аккреционные орогены. Петрозаводск: КарНЦ РАН. 223 с.
- Левченков О.А., Милькевич Р.И., Миллер Ю.В., Зингер Т.Ф., Львов А.Б., Мыскова Т.А., Шулешко И.К. (2003) U-Pb возраст метаандезитов верхней части разреза супракрустальных образований северной части Тикшеозерского зеленокаменного пояса (Северная Карелия). ДАН. 389(3), 378–381.
- Мыскова Т.А., Никонова А.С., Никонов К.А., Житникова И.А., Львов П.А. (2022) Кичанская островодужная система архея (новые геохимические и изотопно-геохронологические доказательства). Труды Карельского научного центра РАН. (5), 103–106.
- Милькевич Р.И., Миллер Ю.В., Глебовицкий В.А., Богомолов Е.М., Гусева В.Ф. (2003) Толеитовый и известково-щелочной магматизм в северной части Тикшеозерского зеленокаменного пояса: геохимические признаки субдукционной обстановки. Геохимия. (12), 1262–1274.
- Milkevich R.I., Miller Yu.V., Glebovitsky V.A., Bogomolov E.M., Guseva V.F. (2003) Tholeiitic and calc-alkaline magmatism in the northern part of the Tikshozero Greenstone Belt: Geochemical evidence of an subduction environment. Geochem. Int. 41(12), 1152–1164.
- Милькевич Р.И., Мыскова Т.А. (1998) Позднеархейские метатерригенные породы Западной Карелии (литология, геохимия, источники сноса). Литология и полезные ископаемые. (2), 177–194.
- Милькевич Р.И., Мыскова Т.А. Глебовицкий В.А., Львов А.Б., Бережная Н.Г. (2007) Каликорвинская структура и ее положение в системе северо-карельских зеленокаменных поясов: геохимические и геохронологические данные. Геохимия. (5), 483–506.
- Milkevich R.I., Myskova T.A. Glebovitsky V.A., Lvov A.B., Berezhnaya N.G. (2007) Kalikorva structure and its position in the system of the northern Karelian greenstone belts: Geochemical and geochronological data. Geochem. Int. 45(5), 428–450.
- Неелов А.Н. (1980) Петрохимическая классификация метаморфизованных осадочных и вулканических пород. Л.: Наука, 100 с.
- Слабунов А.И. (2008) Геология и геодинамика архейских подвижных поясов (на примере Беломорской провинции Фенноскандинавского щита). Петрозаводск: КарНЦ РАН, 296 с.
- Фролова Т.И., Бурикова И.А. (1997) Магматические формации современных геотектонических остановок. М.: Изд-во МГУ 320 с.
- Чернов В.М. (1964) Стратиграфия и условия осадконакопления вулканогенных (лептитовых) железисто-кремнистых формаций Карелии. М-Л.: Наука, 187 с.
- Щипанский А.А., Бабарина И.И., Крылов К.А., Самсонов А.В., Богина Е.В., Слабунов А.И. (2001) Древнейшие офиолиты на Земле: Неоархейский супрасубдукционый комплекс Ириногорской структуры Северо-Карельского зеленокаменного пояса. ДАН. 377(3), 376–380.
- Bhatia M.R. (1983) Plate Tectonics and Geochemical Composition of Sandstones. The J. Geol. 91, 611–627.
- Blaсk L.P., Kamo S.L., Alen C.M., Aleinikoff J.N., Davis D.W., Korsch R.J., and Foudoulis C. (2003) TEMORA 1: a new zircon standard for U-Pb geochronology. Chemical Geology. 200(1–2), 155–170.
- Condie K.C. (2005) High fild strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos. 79, 491–504.
- Corfu F., Hanchar J.M., Hoskin O.P.W., Kinny P. (2003) Atlas of zircon textures // Zircon. Rev. Miner. Geochem. 53, 469–500.
- Defant M.J., Drummond M.S. (1990) Derivation of some modem arc magmas by melting of young subducted lithosphere. Nature. 347, 662–665.
- Eby G.N. (1992) Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology. 20, 641–644.
- Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. (2001) A geochemical classification for granitic rocks. J. Petrology. 42, 2033–2048.
- Goldstein S.J., Jacobsen S.B. (1988) Nd and Sr isotopic systematics of rivers water suspended material: implications for crustal evolution // Earth Planet. Sci. Lett. 87, 249–265.
- Hollings P., Kerrich R. (2000) An Archean arc basalt — Nb-enriched basalt — adakite association: the 2.7 Ga Confederation assemblage of the Birch-Uchi greenstone belt. Contrib. Mineral. Petrol. 139(2), 208–226.
- Hollings, P., Stott G., and Wyman D. (2000) Trace element geochemistry of the MeenDempster greenstone belt, Uchi subprovince Superior Province, Canada: back-arc development on the margins of an Archean protocontinent. Canad. J. Earth Sci. 37, 1021–1038.
- Hoskin P.W.O., Schaltegger U. (2003) The Composition of zircon and igneous and metamorphic petrogenesis // Zirkon: Reviews in mineralogy and geochemistry. 53, 27–62.
- Irvine, T.N., and Baragar, W.R.A. (1971) A guide to the chemical classification of the common volcanic rocks. Canad. J. Earth Sci. 8, 523–548.
- Jacobsen S.B., Wasserburg G.J. (1984) Sm-Nd evolution of chondrites and achondrites. Earth Planet. Sci. Lett. 67, 137–150.
- Keto L.S., Jacobsen S.B. (1987) Nd and Sr isotopic variations of Early Paleozoic oceans. Earth Planet. Sci. Lett. 84, 27–41.
- Le Maitre R.W., Bateman P., Dudek, A.J. and Keller M.J. (1989) A classification of igneous rocks and glossary of terms. Oxford: Blackwell, 193 p.
- Ludwig K.P. (2000) SQUID 1. 00. A User’s Manual. Berkeley Geochronology Center. Special Publication. (2), 17 p.
- Ludwig K.P. (2001) Isoplot/Ex. A User’s Manual. Berkeley Geochronology Center. Special Publication. (1), 56 p.
- Maniar P.D., Piccoli P.M. (1989) Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 101, 635–643.
- Nance W.B., Taylor S.R. (1976) Rare earth element patterns and crustal evolution — I. Australian post-Archean sedimentary rocks. Geochim. Cosmochim. Acta. 40, 1539–1545.
- Nesbitt H.W., Yong G.M. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature. 299, 715–717.
- Pearce J.A., Harris N.B.W., Tindle A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 25, 956–983.
- Polat A., Kerrich R. (2000) Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: Implications for late Archean subduction zone petrogenetic processes. Contrib. Mineral. Petrol. 141(1), 36–52.
- Richard P., Shimizu N., Allegre C.J. (1976) 143Nd/144Nd a natural tracer: An application to oceanic basalts. Earth Planet. Sci. Lett. 31, 269–278.
- Rollinson H.R. (1993) Using geochemical data: evaluation, presentation, interpretation. New York. 352 p.
- Rubatto D. (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism // Chem. Geol. 184, 123–138.
- Sun S.S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society London Special Publication. 42, 313–345.
- Whalen J.B., Currie K.L., Chappel B.W. (1987) A-type granites: geochemical characteristic, discrimination and petrogenesis // Contrib. Mineral. Petrol. 95, 407–419.
- Whitney D.L., Evans B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist. 95, 185–187.
- Williams I.S. (1998) U-Th-Pb geochronology by ion microprobe. In Rev. Econ. Geol. (Eds. McKibben M.A., Shanks III W.С., Ridley W.I.). 7, 1–35.
Supplementary files
