Experimental study of pargasite NaCa2 (Mg4Al)[Si6Al2O22](OH)2 stability at T = 1000–1100°C and the pressure is up to PH2O = 5 kbar

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents materials on experimental study of pargasite stability. On the example of calcic amphibole, experimental modeling of the processes occurring in the conditions of volcanic hearth at pressures up to 5 kbar was carried out. The phase diagram of pargasite was clarified. The occurring reactions and their parameters are revealed. Based on the experimental data obtained, the stability of pargasite is controlled by three reactions. The first reaction takes place in the area of low water pressure less than 1 kbar – dehydration reaction: Prg = Fo + Sp + Di + Ne + An + H2O. The second reaction takes place in the area of water pressure more than 1.2-1.5 kbar and temperature around 1100°C. Pargasite decomposition is controlled by incongruent melting: Prg = Fo + Sp + Di+Ne +An }L + H2O. The third reaction takes place in the same pressure range as the previous one, but at lower temperatures ~1050 °C. This reaction determines the pargasite liquidus in the melt and is related to the interaction between the amphibole and the coexisting melt: Prg + L = Fo + Sp + Di + {Ne +Pl}L + H2O. Presumably, the activity of the melt silica aSiO2 has the greatest impact on the pargasite liquidus.

Full Text

Restricted Access

About the authors

V. N. Devyatova

D.S. Korzhinskii Institute of Experimental Mineralogy of Russian Academy of Sciences

Author for correspondence.
Email: deviatova@iem.ac.ru
Russian Federation, 142432, Moskovskaya oblast', Chernogolovka, Akademika Osipyana str., 4

A. N. Nekrasov

D.S. Korzhinskii Institute of Experimental Mineralogy of Russian Academy of Sciences

Email: deviatova@iem.ac.ru
Russian Federation, 142432, Moskovskaya oblast', Chernogolovka, Akademika Osipyana str., 4

G. V. Bondarenko

D.S. Korzhinskii Institute of Experimental Mineralogy of Russian Academy of Sciences

Email: deviatova@iem.ac.ru
Russian Federation, 142432, Moskovskaya oblast', Chernogolovka, Akademika Osipyana str., 4

References

  1. Гиорсо М. С., Кармайкл И. С.Е. (1992) Моделирование магматических систем: петрологическое приложение. Термодинамическое моделирование в геологии (минералы, флюиды, расплавы) Ред.: Кармайкл И., Ойгстер Х. М.: Мир. 487–518.
  2. Жариков В. А. (1976) Основы физико-химической петрологии. М.: Изд-во МГУ, 420 с.
  3. Кадик А. А., Максимов А. П., Иванов Б. В. (1986) Физико-химические условия кристаллизации и генезис андезитов (на примере Ключевской группы вулканов). М.: Наука, 158 с.
  4. Колосков А. В., Ананьев В. В., Пузанков М. Ю. (2014) Амфибол в четвертичных гавайитах Кекукнайского вулканического массива (Камчатка) как показатель декомпрессионной эволюции расплавов повышенной щелочности. Записки ВМО. (2), 94–115.
  5. Нагаев Э. Л. (1992) Малые металлические частицы. Успехи физических наук. 162(9), 49–124.
  6. Плечов П. Ю., Цай А. Е., Щербаков В. Д., Дирксен О. В. (2008) Роговые обманки в андезитах извержения 30 марта 1956 г. вулкана Безымянный и условия их опацитизации. Петрология. 16(1), 21–37.
  7. Путилин Ю. М., Белякова Ю. А., Голенко В. П. (1987) Синтез минералов (асбест, слюда, гранат). М.: Недра. 256 с.
  8. Ходоревская Л. И., Аранович Л. Я. (2016) Экспериментальное исследование взаимодействия амфибола с флюидом H2O–NaCl при 900оС, 500 МПа: к процессам плавления и массопереноса в гранулитовой фации. Петрология. 24(3), 235–254.
  9. Allen J. C., Boettcher A. L., Marland G. (1975) Amphiboles in andesite and basalt: I. Stability as a function of P-T-fO2. Am. Mineral.: J. Earth Planetary Materials. 60 (11–12), 1069–1085.
  10. Boyd F. R. (1959) Hydrothermal investigations of amphiboles. Researches in geochem. 1, 377–396.
  11. Browne, B. L., Gardner, J. E. (2006). The influence of magma ascent path on the texture, mineralogy, and formation of hornblende reaction rims. Earth Planet. Sci. Lett. 246(3–4), 161–176.
  12. Buckley V. J. E., Sparks R. S. J., Wood, B. J. (2006) Hornblende dehydration reactions during magma ascent at Soufrière Hills Volcano, Montserrat. Contrib. Mineral. Petrol. 151(2), 121–140.
  13. Buffat P., Borel J. P. (1976) Size effect on the melting temperature of gold particles. Phys. Rev. A. 13(6), 2287–2298.
  14. Barboni, M., Bussy, F. (2013). Petrogenesis of magmatic albite granites associated to cogenetic A-type granites: Na-rich residual melt extraction from a partially crystallized A-type granite mush. Lithos. 177, 328–351.
  15. Cannon J. F. (1974). Behavior of the elements at high pressures. J. Phys. Chem. Ref. Data. 3(3), 781–824.
  16. De Angelis S. H., Larsen J., Coombs M., Dunn A., Hayden L. (2015) Amphibole reaction rims as a record of pre-eruptive magmatic heating: an experimental approach. Earth Plan. Sci. Lett. 426, 235–245.
  17. Della Ventura G., Hawthorne F. C., Robert J.-L., Delbove F., Welch M. F., Raudsepp M. (1999) Short-range order of cations in synthetic amphiboles along the richterite-pargasite join. Eur. J. Mineral. 11, 79–94.
  18. Ellis D. J., Thompson A. B. (1986) Subsolidus and partial melting reactions in the quartz-excess CaO + MgO + Al2O3 + SiO2 + H2O system under water-excess and water-deficient conditions to 10 kb: some implications for the origin of peraluminous melts from mafic rocks. J. Petrol. 27(1) 91–121.
  19. Eggler D. H. (1972) Amphibole stability in H2O-undersaturated calc-alkaline melts. Earth Plan. Sci. Lett. 15(1), 28–34.
  20. Frost D. J. (2006) The stability of hydrous mantle phases. Rev. Mineral. Geochem. 62(1), 243–271.
  21. Garcia M. O., Jacobson S. S. (1979) Crystal clots, amphibole fractionation and the evolution of calc-alkaline magmas. Contrib. Mineral. Petrol. 69(4), 319–327.
  22. Gilbert, M. C. (1966) Synthesis and stability relations of the hornblende ferropargasite. Am. J. Sci. 264(9), 698–742.
  23. Gilbert M. C., Helz R. T., Popp R. K., Spear F. S. (1982) Experimental studies of amphibole stability. Rev. Mineral. 9B. 229–353.
  24. Ghiorso, M. S., Sack, R. O. (1995). Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197–212.
  25. Green D. H., Ringwood A. E. (1967) The genesis of basaltic magmas. Contrib. Mineral. Petrol. 15, 103–190.
  26. Grove T. L., Elkins-Tanton L. T., Parman S. W., Chatterjee N., Müntener O., Gaetani G. A. (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib. Mineral. Petrol. 145(5), 515–533.
  27. Gupta A. K., Chattopadhyay S., Chattopadhyay B., Arima M. (2006) Experimental study of the system diopside-nepheline-sanidine at 0.1, 1 and 2 GPa [P (H2O) = P (Total)]: Its significance in the genesis of alkali-rich basic and ultrabasic rocks. Lithos. 86(1–2), 91–109.
  28. Jenkins D. M., Bozhilov K. N., Ishida K. (2003) Infrared and TEM characterization of amphiboles synthesized near the tremolite-pargasite join in the ternary system tremolite-pargasite-cummingtonite. Am. Mineral. 88(7), 1104–1114.
  29. Johannes W. (1978) Melting of plagioclase in the system Ab–An–H2O and Qz–Ab–An–H2O at PH20 = 5 kbars, an equilibrium problem. Contrib. Mineral. Petrol. 66 (3), 295–303.
  30. Johannes W., Holtz F. (1996) Petrogenesis and Experimental Petrology of Granitic Rocks. Minerals and Rocks Series. Berlin: Springer-Verlag. 22, xiii + 335 p.
  31. Holloway J. R. (1973) The system pargasite-H2O-CO2: a model for melting of a hydrous mineral with a mixed-volatile fluid I. Experimental results to 8 kbar. Geochim. Cosmochim. Acta. 37(3), 651–666.
  32. Holtz F., Pichavant M., Barbey P., Johannes W. (1992) Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar. Am. Mineral. 77(11–12), 1223–1241.
  33. Kimura, M., Mikouchi, T., Suzuki, A., Miyahara, M., Ohtani, E., Goresy, A. E. (2009) Kushiroite, CaAlAlSiO6: A new mineral of the pyroxene group from the ALH 85085 CH chondrite, and its genetic significance in refractory inclusions. Am. Mineral. 94(10), 1479–1482.
  34. Kozu S., Yoshiki B. (1927) Die Dissoziationstemperatur von brauner Horblende und ihre rashe Expansion bei dieser Temperatur. Sci. Rep. Tohoku Univ. Ser. 3(2), 7.
  35. Kuno H. (1950) Petrology of Hakone volcano and the adjacent areas, Japan. Geol. Society of Am. Bull. 61(9), 957–1020.
  36. Krawczynski M. J., Grove T. L., Behrens H. (2012) Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contrib. Mineral. Petrol. 164, 317–319.
  37. Lafuente B., Downs R. T., Yang H., Stone N. (2015) The power of databases: the RRUFF project. In: Highlights in Mineralogical Crystallography, Armbruster T., Danisi R. M., eds. Berlin, Germany, W. De Gruyter. 1–30.
  38. Leake B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C., Grice, J. D., Youzhi, G. (1997) Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Mineral. Mag. 61(405), 295–310.
  39. Lykins R. W., Jenkins D. M. (1992) Experimental determination of pargasite stability relations in the presence of orthopyroxene. Contrib. Mineral. Petrol. 112(2), 405–413.
  40. Manning, C. E., Antignano, A., Lin, H. A. (2010). Premelting polymerization of crustal and mantle fluids, as indicated by the solubility of albite + paragonite + quartz in H2O at 1 GPa and 350–620oC. Earth Plan. Sci. Lett. 292(3–4), 325–336.
  41. Martin R. F. (2007) Amphiboles in the igneous environment. Reviews in Mineralogy and Geochemistry. 67(1), 323–358.
  42. Merrill R. B., Wyllie P. J. (1975) Kaersutite and kaersutite eclogite from Kakanui, New Zealand – water-excess and water-deficient melting to 30 kilobars. Geol. Soc. Am. Bull. 86(4), 555–570.
  43. Morimoto, N., Fabries, J., Ferguson, A. K., Ginzburg, I. V., Ross, M., Seifert, F. A., … & Gottardi, G. (1988) Nomenclature of pyroxenes. Miner. Mag. 52(367), 535–550.
  44. Murphy M. D., Sparks R. S. J., Barclay J., Carroll M. R., Brewer T. S. (2000) Remobilization of andesite magma by intrusion of mafic magma at the Soufriere Hills Volcano, Montserrat, West Indies. J. Petrol. 41(1), 21–42.
  45. Mysen B. O., Virgo D., Popp R. K., Bertka C. M. (1998) The role of H2O in Martian magmatic systems. Am. Miner. 83(9–10), 942–946.
  46. Pati J. K., Arima M., Gupta A. K. (2000) Experimental study of the system diopside–albite–nepheline at P (H2O) = P (Total) = 2 and 10 kbar and at P (Total) = 28 kbar. Can. Mineral. 38(5), 1177–1191.
  47. Rutherford M. J., Devine J. D. (2003) Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2002 Soufriere Hills magma. J. Petrol. 44(8), 1433–1453.
  48. Rutherford M. J., Hill P. M. (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions J. Geophys. Research: Solid Earth. 98(B11), 19667–19685.
  49. Shaw, C. S., Eyzaguirre, J. (2000). Origin of megacrysts in the mafic alkaline lavas of the West Eifel volcanic field, Germany. Lithos. 50(1–3), 75–95.
  50. Schairer J. F., Yoder H. S. (1960) The nature of residual liquids from crystallization, with data on the system nepheline-diopside-silica Am. J. Sci. A. 258, 273–283.
  51. Sharma A. (1996) Experimentally derived thermochemical data for pargasite and reinvestigation of its stability with quartz in the system Na2O–CaO–MgO–Al2O3–SiO2–H2O. Contrib. Mineral. Petrol. 125(2), 263–275.
  52. Shmulovich, K., Graham, C., & Yardley, B. (2001). Quartz, albite and diopside solubilities in H2O–NaCl and H2O–CO2 fluids at 0.5–0.9 GPa. Contrib. Mineral. Petrol. 141, 95–108.
  53. Spear F. S. (1981) An experimental study of hornblende stability and compositional variability in amphibolite. Am. J. Sci. 281(6), 697–734.
  54. Thompson A. B. (1982) Dehydration melting of pelitic rocks and the generation of H2O -undersaturated granitic liquids. Am. J. Sci. 282(10), 1567–1595.
  55. Wyllie P. J., Tuttle O. F. (1961) Experimental investigation of silicate systems containing two volatile components; Part 2, The effects of NH3 and HF, in addition to H2O on the melting temperatures of albite and granite Am. J. Sci. 259(2), 128–143.
  56. Yoder H. S., Tilley C. E. (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrol. 3(3), 342–532.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phase diagram of pargasite NaCa2(Mg4Al)[Si6Al2O22](OH)2 according to literature data. 1 – Holloway, 1973; Boyd 1959; Lykins, Jenkins 1992; 2, 3 – experiments of series 1: 2 – temperature approach from below; 3 – from above, description in text; Cpx – clinopyroxene; Opx – orthopyroxene; L – melt; mineral designations see Table 3.

Download (114KB)
3. Fig. 2. BSE photographs of the products of experiments of series 1 after heating pargasite at PH2O = 2 kbar, 4 h: a) 1000oC (p28); b) 1087oC (p37); for mineral designations see Table 3.

Download (594KB)
4. Fig. 3. a) Compositions of the obtained amphiboles on the classification diagram (f.e.): 1 - end members; 2 - experiments with pargasite series 1 and 2; End members: Act - actinolite, Arf - arfedsonite, Eck - eckermanite, Ed - edenite, Hbl - hornblende, Hst - hastingsite, Gln - glaucophane, Ktf - katophorite, Prg - pargasite, Trm - tremolite, Rbk - riebeckite, Rсt - richterite, Ts - tschermakite. b) Raman spectra of unoriented pargasite crystals after heating at PH2O = 2 kbar: a - pargasite RRUFF; b - 1000oС, (p28); at –1075oС, (p36); g –1070oС, (p55); d –1087oС, (p37).

Download (226KB)
5. Fig. 4. (a, b) Composition-paragenesis diagrams (at. %). Products of experiments of series 1, in Fig. 4a only glass compositions. 1 – initial pargasite, 2 – paragenesis with pargasite, 3 – without pargasite, 4 – glass compositions of experiment p90. Phases: Ab – albite, An – anorthite, G1, G2 – glasses with calculated plagioclase and anorthite, Qz – quartz, Wo – wollastonite, mineral designations see Tables 3, 5.

Download (149KB)
6. Fig. 5. BSE photographs of the products of experiments in series 2. Interaction of pargasite with a) AbDi at 1050ОС, 4 h (p101); b) Ne at 1060ОС, 24 h (p105); Gl1,2,3 – glasses of reaction rim zones, G0 – relict glass of AbDi composition, for mineral designations see Table 3.

Download (582KB)
7. Fig. 6. a) Phase diagram of pargasite. Literature data: 1 - dehydration and incongruent melting of pargasite (Boyd, 1959; Holloway, 1973); 2 - water-saturated eutectics Ab-Qz (Holtz et al., 1992); Ne-Ab, Ne-Ab-Di and dry melting of Ne-Ab-Di (Schairer, Yoder, 1960; Pati et al., 2000); 3 - supposed melting of the Ne-An-Di system: dry and isopleth of 2 wt. % H2O; 4 - supposed water-saturated melting Ne-Pl-Di; b) Phase diagram of pargasite taking into account the data obtained by us. 1 - data of Boyd (1959) and Holloway (1973); 2 - our data. L – melt, H2Oamph – melting according to the isopleth of water content in amphibole (~2 wt.%); for mineral designations see Table 3.

Download (190KB)
8. Fig. 7. Schematic P, T-diagram of Na2O-CaO-MgO-Al2O3-SiO2-H2O (NCMASН) system according to experimental data; () – phase is absent. For mineral designations, see Table 3.

Download (104KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies