Sources and evolution of miocene-pleistocene alkaline magmatism in the north-east part of the arabian plate (data from Sr–Nd–Pb isotopic systematics and K–Ar geochronometry)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A geochronological and isotope-geochemical study of alkaline basalts from three areas of young magmatism within the northeastern part of the Arabian Plate (Southeastern Turkey), Batman, Kurtalan and Alemdağ, was carried out. The obtained isotope data have indicated that the volcanism in the studied region developed over 5 mln years from the end of Miocene to the mid of Pleistocene during four pulses separated by breaks in magmatic activity: 6.1-4.9 Ma (Batman area, hawaiites), ~3.0 Ma (Alemdağ plateau, phase I, basalts), 2.0-1.9 Ma (Alemdağ plateau, phase II, tephrites), and 1.5-1.3 Ma (Alemdağ plateau, phase III, basalts; Kurtalan area, basalts). A comparison of spatial-temporal regularities of magmatic activity evolution in the studied part of the Arabian Plate and within the largest basalt plateau of Arabian foreland, Karacadağ plateau, located to the west, was carried out. The results of Sr-Nd-Pb isotope-geochemical studies show that the development of young basalt volcanism within the northern part of the Arabian Plate was characterized at different time by participation of various mantle sources in magma generation under this region. Initial pulses of magmatic activity are associated with melting of Arabian subcontinental lithospheric mantle (SCLM). The processes of fractional crystallization combined with crustal assimilation (AFC) have played an important role in the petrogenesis of lavas as well. In the subsequent time, a deep mantle source (PREMA) with a depleted isotopic composition of Sr and Pb played a leading role in the formation of basaltic magmas of increased alkalinity. The melts generated by this source were mixed with the SCLM material in various proportions at different stages of magmatism with a limited participation of AFC processes in the petrogenesis of the rocks. It was concluded that young basalt volcanism of elevated alkalinity in the northeast of the Arabian Plate is not related to the collision of the Eurasian and Arabian plates genetically, but presumably manifested here as a result of the migration of the initial rift geodynamic set from the Red Sea basin to the north along Levantine and East Anatolian transform faults with associated convective wave flows in the lower part of mantle under this part of the Earth.

Full Text

Restricted Access

About the authors

А. V. Chugaev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: vassachav@mail.ru
Russian Federation, 119017, Moscow, Staromonetnyj pr., 35

A. V. Parfenov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: vassachav@mail.ru
Russian Federation, 119017, Moscow, Staromonetnyj pr., 35

V. А. Lebedev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: vassachav@mail.ru
Russian Federation, 119017, Moscow, Staromonetnyj pr., 35

I. V. Chernyshev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: vassachav@mail.ru
Russian Federation, 119017, Moscow, Staromonetnyj pr., 35

V. Oyan

Van Yüzüncü Yil University

Email: vassachav@mail.ru

Faculty of Engineering, Department of Mining Engineering

Turkey, 65080, Van, Zeve Campus

Y. Özdemir

Van Yüzüncü Yil University

Email: vassachav@mail.ru

Faculty of Engineering, Department of Geological Engineering

Turkey, 65080, Van, Zeve Campus

E. Oyan

Van Yüzüncü Yil University

Email: vassachav@mail.ru

Faculty of Engineering, Department of Geological Engineering

Turkey, 65080, Van, Zeve Campus

Ju. V. Gol'cman

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: vassachav@mail.ru
Russian Federation, 119017, Moscow, Staromonetnyj pr., 35

I. V. Rassohina

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: vassachav@mail.ru
Russian Federation, 119017, Moscow, Staromonetnyj pr., 35

B. I. Gareev

Kazan Federal University

Email: vassachav@mail.ru
Russian Federation, 420008, Kazan

G. А. Batalin

Kazan Federal University

Author for correspondence.
Email: vassachav@mail.ru
Russian Federation, 420008, Kazan

C. B. Pavlidis

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: vassachav@mail.ru
Russian Federation, 119017, Moscow, Staromonetnyj pr., 35

References

  1. Когарко Л. Н. (2006) Щелочной магматизм и обогащенные мантийные резервуары: механизмы возникновения, время появления и глубины формирования. Геохимия. (1), 5–13.
  2. Когарко Л. Н., Зартман Р. Э. (2011) Новые данные о возрасте Гулинской интрузии и проблема связи щелочного магматизма Маймеча-Котуйской провинции с Сибирским суперплюмом (данные по изотопии U-Th-Pb системы). Геохимия. (5), 462–472.
  3. Лазаренков В. Г. (2010) Щелочные плюмы континентов и океанов. Геология и геофизика. 51(9), 1240–1248.
  4. Ларионова Ю. О., Самсонов А. В., Шатагин К. Н., Носова А. А. (2013) Изотопно-геохронологические свидетельства палеопротерозойского возраста золоторудной минерализации в архейских зеленокаменных поясах Карелии (Балтийский щит). Геология рудных месторождений. 55(5), 374–396.
  5. Рябчиков И. Д., Когарко Л. Н. (2016) Физико-химические параметры материала глубинных мантийных плюмов. Геология и геофизика. 57(5), 874–888.
  6. Толстихин И. Н., Каменский И. Л., Марти Б. (1999) Идентификация вещества нижнемантийного плюма в девонских щелочно-ультраосновных-карбонатитовых комплексах Кольского п-ова на основании изучения изотопии благородных газов и радиоактивных элементов. Апатиты, КНЦ РАН, 97 с.
  7. Чернышев И. В., Лебедев В. А., Аракелянц М. М. (2006) K-Ar датирование четвертичных вулканитов: методология и интерпретация результатов. Петрология. 14(1), 69–89.
  8. Чернышев И. В., Чугаев А. В., Шатагин К. Н. (2007) Высокоточный изотопный анализ Pb методом многоколлекторной ICP-масс-спектрометрии с нормированием по 205Tl/203Tl: оптимизация и калибровка метода для изучения вариаций изотопного состава Pb. Геохимия. (11), 1155–1168.
  9. Чугаев А. В., Чернышев И. В., Лебедев В. А., Еремина А. В. (2013) Изотопный состав свинца и происхождение четвертичных лав вулкана Эльбрус (Большой Кавказ, Россия): данные высокоточного метода MC–ICP-MS. Петрология. 21(1), 20–33.
  10. Чугаев А. В., Будяк А. Е., Чернышев И. В., Дубинина Е. О., Гареев Б. И., Шатагин К. Н., Тарасова Ю. И., Горячев Н. А., Скузоватов С. Ю. (2018) Изотопные (Sm-Nd, Pb-Pb и 34S) и геохимические характеристики метаосадочных пород Байкало-Патомского пояса (Северное Забайкалье) и эволюция осадочного бассейна в неопротерозойское время. Петрология. 26(3), 213–244.
  11. Abdel-Fattah M., Lease N. A. (2012) Petrogenesis of Cenozolc mafic-ultramafic alkaline lavas from the Tigris volcanic field, NE Syria. Geological Magazine. 149(1), 1–18.
  12. Açlan M., Altun Y. (2018) Syn-collisional I-type Esenkoy Pluton (Eastern Anatolia-Turkey): An indication for collision between Arabian and Eurasian plates. Journal of African Earth Sciences. 142, 1–11.
  13. Agostini S., Di Giuseppe P., Manetti P., Savaşзın M. Y., Conticelli S. (2022) Geochemical and isotopic (Sr-Nd-Pb) signature of crustal contamination in Na-alkali basaltic magmas of South-East Turkey. Ital. J. Geosci. 141(3), 363–384.
  14. Anzellini S., Dewaele A., Mezouar M., Loubeyre P., Morard G. (2013) Melting of iron at Earth's inner core boundary based on fast X-ray diffraction. Science. 340, 464–466.
  15. Le Bas M. J., Le Maitre R. W., Streckeisen A., Zanettin B. (1986) A chemical classification of volcanic rocks based on the alkali-silica diagram. J. Petrol. 27, 745–750.
  16. Bettinelli, M., Beone, G. M., Spezia, S., Baffi, C. (2000) Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Analytica Chimica Acta. 424, 289–296.
  17. Boehler R. (2000) High pressure experiments and the phase diagram of lower mantle and core materials. Rev. Geophys. 38, 221–245.
  18. Boynton W. V. (1984) Cosmochemistry of the rare earth elements: meteorite studies. Rare Earth Element Geochemistry. Amsterdam, Elsevier, 63–114.
  19. Caran Ş., Polat S. (2022) Petrology of Mt. Kıra continental alkali lavas with arc-like signature, Batman, SE Anatolia, Turkey: Evidence for mafic juvenile lower crust assimilated intraplate basalts in the collision- and mantle flow-driven geodynamic setting of Arabian Foreland. Lithos, 416, 106645. doi: 10.1016/j.lithos.2022.106645
  20. Ekici T., Macpherson C. G., Otlu N. (2012) Polybaric melting of a single mantle source during the Neogene Siverek phase of the Karacadağ Volcanic Complex, SE Turkey. Lithos. 146–147, 152–163.
  21. Ekici T., Macpherson C. G., Otlu N., Fontignie D. (2014) Foreland Magmatism during the Arabia-Eurasia Collision: Pliocene-Quaternary Activity of the Karacadag Volcanic Complex, SW Turkey. J. Petrology. 55, 1753–1777.
  22. Ercan T., Fujitani T., Matsuda J-I., Notsu K., Tokel S., Ui T. (1990) Doğu ve Güneydoğu Anadolu Neojen-Kuvaterner volkanitlerine ilişkin yeni jeokimyasal, radyometrik ve izotopik verilerin yorumu. Maden Tetkik ve Arama Dergisi. 110, 143–164.
  23. Faure G. (2001) Origin of igneous rocks: the isotopic evidence. Berlin, New York: Springer, 496.
  24. Goldstein S. J., Jacobsen S. B. (1988) Nd and Sr isotopic systematic of river water suspended material: implications for crustal evolution. Earth Planet. Sci. Letters. 87(3), 249–265.
  25. Hart S. R. (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature. 309(5971), 753–757.
  26. Hofmann A. W. (1997) Mantle geochemistry: the message from oceanic volcanism. Nature. 385(16), 219–229.
  27. Irvine T. M., Baragar W. R. (1971) A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences. 8, 523–548.
  28. Jacobsen S. B., Wasserburg G. J. (1984) Sm-Nd isotopic evolution of chondrites and achondrites. Earth Planet. Sci. Lett. 67(2), 137–150.
  29. Karaoğlan F., Parlak O., Thöni M., Klötzli U., Koller F. (2016) The temporal evolution of the active margin along the Southeast Anatolian Orogenic Belt (SE Turkey): Evidence from U–Pb, Ar–Ar and fission track chronology. Gondwana Research. 33, 190–208.
  30. Keskin M. (2003) Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters. 30, 8046–8050.
  31. Keskin M., Чугаев А. В., Лебедев В. А., Шарков Е. В., Oyan V., Kavak O. (2012а) Геохронология и природа мантийных источников позднекайнозойского внутриплитного магматизма фронтальной части Аравийской плиты (неовулканическая область Караджадаг, Турция). Сообщение 1. Результаты изотопно-геохронологических исследований. Вулканология и сейсмология. (6), 31–42.
  32. Keskin M., Чугаев А. В., Лебедев В. А., Шарков Е. В., Oyan V., Kavak O. (2012б) Геохронология и природа мантийных источников позднекайнозойского внутриплитного магматизма фронтальной части Аравийской плиты (неовулканическая область Караджадаг, Турция). Сообщение 2. Результаты геохимических и изотопных (Sr-Nd-Pb) исследований. Вулканология и сейсмология. (6), 43–70.
  33. Lebedev V. A., Chugaev A. V., Unal E., Sharkov E. V., Keskin M. (2016) Late Pleistocene Tendurek volcano (Eastern Anatolia, Turkey). 2. Geochemistry and petrogenesis of the rocks. Petrology. 24(3), 234–270.
  34. Lustrino M., Keskin M., Mattioli M., Lebedev V. A., Chugaev A. V., Sharkov E. V., Kavak O. (2010) Early activity of the largest Cenozoic shield volcano in the circum-Mediterranean area: Mt. Karacadag, SE Turkey. Eur. J. Mineral. 22, 343–362.
  35. Le Maitre R. W. (1976) The Chemical Variability of Some Common Igneous Rocks. J. Petrol. 17, 589–598.
  36. Marty B., Tolstikhin I. N. (1998) CO2 fluxes from mid ocean ridges arcs and plumes. Chem. Geol. 115, 233–248.
  37. Middlemost E. A.K. (1975) The basalt clan. Earth Sci. Rev. 11, 337–364.
  38. Mattash M. A., Pinarelli L., Vaselli O., Minissale A., Al-Kadasi M., Shawki M. N., Tassi F. (2013) Continental flood basalts and rifting: geochemistry of Cenozoic Yemen volcanic province. J. Volcanol. Geotherm. Res. 4, 1459–1466.
  39. Mattash M. A., Pinarelli L., Vaselli O., Minissale A., James-Viera M.C., Al-Kadasi M., Shawki M. N., Tassi F. (2014) Geochemical evolution of southern Red sea and Yemen flood volcanism: evidence for mantle heterogeneity. Arab. J. Geosci. 7, 4831–4850.
  40. Nosova A. A., Kargin A. V., Sazonova L. V., Dubinina E. O., Chugaev A. V., Lebedeva N. M., Yudin D. S., Larionova Y. O., Abersteiner A., Gareev B. I., Batalin G. A. (2020) Sr-Nd-Pb isotopic systematic and geochronology of ultramafic alkaline magmatism of the southwestern margin of the Siberian Craton: Metasomatism of the sub-continental lithospheric mantle related to subduction and plume events. Lithos. 364–365, 105509.
  41. Notsu K., Fujitani T., Ui T., Matsuda J., Ercan T. (1995) Geochemical features of collision related volcanic rocks in Central and Eastern Anatolia, Turkey. J. Volcanol. Geotherm. Res. 64, 171–192.
  42. Okay A. I., Zattin M., Cavazza W. (2010) Apatite fission-track data for the Miocene Arabian-Eurasia collision. Geology. 38, 35–38.
  43. Oyan, V. Keskin M., Lebedev V. A., Chugaev A. V., Sharkov E. V. (2016) Magmatic evolution of the Early Pliocene Etrüsk stratovolcano, Eastern Anatolia collision zone, Turkey. Lithos. 256–257, 88–108.
  44. Oyan V., Keskin M., Lebedev V. A., Chugaev A. V., Sharkov E. V., Ünal E. (2017) Petrology and Geochemistry of the Quaternary Mafic Volcanism in the northeast of Lake Van, Eastern Anatolian Collision Zone, Turkey. J. Asian Earth Sci.58, 1701–1728.
  45. Oyan V. (2018) Ar/Ar dating and petrogenesis of the Early Miocene Taşkapı-Mecitli (Erciş-Van) granitoid, Eastern Anatolia Collisional Zone, Turkey. J. Asian Earth Sci.158, 210–226.
  46. Oyan E., Oyan V., Özdemir Y., Güleç N. (2023) Origin and Petrogenesis of Magmatism in Collision-Related Environments: Evidence from the Melikler Volcanics on the Kars Plateau-Turkey in the Turkish-Iranian High Plateau. J. Petrol. 64, 1–26.
  47. Özdemir Y., Güleç N. (2014) Geological and Geochemical evolution of Suphan Stratovolcano Eastern Anatolia, Turkey: Evidence for the lithosphere-asthenosphere interaction on post collisional volcanism. J. Petrol. 55, 37–62.
  48. Özdemir Y., Mercan Ç., Oyan V., Özdemir A. (2019) Composition, pressure, and temperature of the mantle source region of quaternary nepheline-basanitic lavas in Bitlis Massif, Eastern Anatolia, Turkey: A consequence of melts from Arabian lithospheric mantle. Lithos. 328–329, 115–129.
  49. Pearce J. A. (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. Continental Basalts and Mantle Xenoliths. Shiva Press, U.K, 230–249.
  50. Philip H., Avagyan A., Karakhanian A., Ritz J.-F., Rebai S. (2001) Slip-rates and recurrence intervals of strong earthquakes along the Pambak-Sevan-Sunik Fault (Armenia). Tectonophysics. 2001. 343, 205–232.
  51. Pik R., Deniel C., Coulon C., Yirgu G., Marty B. (1999) Isotopic and trace element signatures of Ethiopian flood basalts: evidence for plume-lithosphere interactions. Geochim. Cosmochim. Acta. 63, 2263–2279.
  52. Rehkämper M., Halliday A. M. (1998) Accuracy and long-term reproducibility of Pb isotopic measurements by MC–ICP-MS using an external method for correction of mass discrimination. Int. J. Mass Spec. 181, 123–133. https://doi.org/10.1016/ S1387-3806(98)14170-2
  53. Rooney T. O., Hanan B. B., Graham D. W. Furman T., Blichert-Toft J., Schilling J. G. (2012) Upper mantle pollution during Afar plume–continental rift interaction. J. Petrol. 53(2), 365–389.
  54. Steiger R. H., Jäger E. (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362.
  55. Stern R. J., Ren M., Ali K., Forster H.-J., Al Safarjalani A., Nasir S., Whitehouse M. J., Leybourne M. I., Romer R. L. (2014) Early Carboniferous (~357 Ma) crust beneath northern Arabia: Tales from Tell Thannoun (southern Syria). Earth Planet. Sci. Lett. 393, 83–93.
  56. Stoeser D. B., Frost C. D. (2006) Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes. Chem. Geol. 226, 163–188.
  57. Sun S. S., McDonough W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London. 42, 313–345.
  58. Tappe S., Steenfelt A., Nielsen T. (2012) Asthenospheric source of Neoproterozoic and Mesozoic kimberlites from the North Atlantic craton, West Greenland: New high-precision U–Pb and Sr–Nd isotope data on perovskite. Chemical Geology. 320–321, 113–127.
  59. Trieloff M., Kunz J., Clague D. A., Harrison D., Alle`gre C.J. (2000) The nature of pristine noble gases in mantle plumes. Science. 288, 1036–1038.
  60. Trifonov V. G., Dodonov A. E., Sharkov E. V., Golovin D. I., Chernyshev I. V., Lebedev V. A., Ivanova T. P., Bachmanov D. M., Rukieh M., Ammar O., Minini H., Al Kafri A-M., Ali O. (2011) New data on the Late Cenozoic basaltic volcanism in Syria, applied to its origin. J. Volcanol. Geotherm. Res. 199, 177–192.
  61. Türkecan A. (2015) Türkiye’nin Senozoyik volkanitleri. MTA yayınları. Ankara. Ankara. 258 p.
  62. Turner S. P. (2002) On the time–scales of magmatism at island–arc volcanoes. Phil. Trans. R. Soc. 360(1801), 2853–2871.
  63. Van der Hilst R. D., Widiyantoro S., Engdahl E. R. (1997) Evidence of deep mantle circulation from global tomography. Nature, 386(6625), 578–584.
  64. Volker F., McCulloch M. T., Altherr R. (1993) Submarine basalts from the Red Sea: new Pb, Sr, and Nd isotopic data. Geophys. Res. Lett. 20, 927–930.
  65. Yeşilova Ç., Helvacı C. (2012) Stratigraphy and Sedimentology of North of Batman and Siirt, Turkey. TAPG Bulletin. 23(2), 7–49.
  66. Zindler A., Hart S. (1986) Chemical geodynamics. Annu. Rev. Earth Planet. Sci. (14), 493–571.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geotectonic scheme of the Arabian-Eurasian collision zone (according to Philip et al., 2001 with modifications and additions by the authors). The study area and the studied areas of young volcanism are shown (1 - Batman, 2 - Kurtalan, 3 - Alemdag). 1 - areas of Neogene-Quaternary magmatism, 2 - the largest Quaternary volcanoes, 3 - tectonic faults (a - major thrusts and reverse faults, b - major strike-slip faults, c - minor faults).

Download (548KB)
3. Fig. 2. Schematic geological map of the northeastern part of the Arabian Plate, compiled on the basis of geological maps of Turkey and Syria on a scale of 1:500000. The sampling locations and the K-Ar age values ​​(million years) obtained for them in this work are indicated. 1 – Neogene-Quaternary continental clastic sediments, 2 – Middle Quaternary basaltic lavas (ca. 1.5–1.3 Ma), 3 – Early Quaternary basaltic lavas (ca. 2.0–1.9 Ma), 4 – Pliocene basaltic lavas (ca. 3.0 Ma), 5 – Miocene basaltic lavas (6.1–4.9 Ma), 6 – Paleogene limestones, clastic sediments and evaporites, 7 – Paleogene volcanics, 8 – Cretaceous marls, 9 – Late Jurassic limestones, 10 – Paleozoic metamorphic complexes of the Bitlis-Pouturg massif, 11 – Bitlis suture, 12 – sampling sites.

Download (1MB)
4. Fig. 3. Stratigraphic relationships between young basaltic lavas and sedimentary formations of the Arabian Plate cover within the studied areas of young volcanism (photo by V. Oyan). (a) – Batman volcanic nappe in the area of ​​Mount Kira; (b) – occurrence of basalts of the Batman nappe on sedimentary formations of the Şelmo formation with the formation of a thick quench zone; (c) – basaltic lavas of the Kurtalan volcanic center in the Tigris River valley; (d) – three stratigraphic levels of lavas of the Alemdag plateau.

Download (938KB)
5. Fig. 4. Micrographs of transparent sections of the studied alkaline basalts of the northeastern part of the Arabian Plate. The nicoli are crossed. (a, b) – lavas of the Batman volcanic center, (c) – lavas of the Kurtalan volcanic center, (d, d) – lavas of the first phase of activity of the Alemdag plateau, (e, g) – lavas of the second phase of activity of the Alemdag plateau, (h) – lavas of the third phase of activity of the Alemdag plateau.

Download (1MB)
6. Fig. 5. Classification geochemical diagrams for the studied rocks of the northeastern Arabian Plate. (a) – fragment of the TAS diagram (Le Bas et al., 1986), (b) – K2O–Na2O diagram (Middlemost, 1975). I-B – curve separating rocks of normal and increased alkalinity (Irvine, Baragar, 1971). The composition field of volcanic rocks of the Karacadag plateau is shown based on data from the articles (Lustrino et al., 2010; Keskin et al., 2012б; Ecici et al., 2014). 1 – lavas of the first phase of activity of the Batman volcanic center, 2 – lavas of the second phase of activity of the Batman volcanic center, 3 – lavas of the Kurtalan volcanic center, 4 – lavas of the first phase of activity of the Alemdag plateau, 5 – lavas of the second phase of activity of the Alemdag plateau, 6 – lavas of the third phase of activity of the Alemdag plateau.

Download (199KB)
7. Fig. 6. Distribution spectra for the averaged compositions of the studied volcanics of different ages from the northeastern Arabian Plate: (a) REE normalized to the composition of the chondrite reservoir (CHUR); (b) trace elements normalized to the composition of the primitive mantle. The data for normalization are taken from (Sun, McDonough, 1989; Boynton, 1984). Legend: see Fig. 5. Data on the concentrations of trace elements and REE in the Red Sea basalts and Yemeni traps are taken from (Mattash et al., 2013, 2014).

Download (362KB)
8. Fig. 7. Sr–Nd isotope diagram for Miocene-Quaternary moderately alkaline and alkaline basalts of the Batman, Alemdag and Kurtalan volcanic areas (Turkey). The diagram additionally shows the fields of Miocene-Quaternary volcanic rocks of the Karacadağ volcanic region (Keskin et al., 2012b), the East Anatolian Province (Lebedev et al., 2016; Oyan et al., 2016, 2017; Özdemir, Güleç, 2014), the MORB fields of the Red Sea and the Afar plume (Volker et al., 1993; Pik et al., 1999; Rooney et al., 2012), as well as the depleted mantle source (DM) (Goldstein, Jacobsen, 1988) and the “PREMA” and “EM II” type mantle sources (Zindler, Hart, 1986).

Download (247KB)
9. Fig. 8. Pb-Pb diagram for Miocene-Quaternary alkaline and moderately alkaline basalts of the Batman, Kurtalan and Alemdağ volcanic areas (Turkey). The diagram shows the Pb isotope composition fields of Precambrian rocks of the upper and lower crust of the Arabian Plate (Stoeser and Frost, 2006; Stern et al., 2014), MORB basalts of the Red Sea and the Afar plume (Volker et al., 1993; Pik et al., 1999), and Miocene-Quaternary volcanics of the Karacadağ area and the East Anatolian provinces (Keskin et al., 2012b; Lebedev et al., 2016; Oyan et al., 2016, 2017).

Download (264KB)
10. Fig. 9. Ta/Yb–Th/Yb diagram (Pearce, 1983) for the studied lavas of the Arabian Plate. Data for the lavas of the Karajadag area are taken from (Keskin et al., 2012b), for the Cenozoic traps of Yemen – from (Mattash et al., 2013, 2014). Legend – see Fig. 5.

Download (183KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».